
When tapping with taper pipe thread taps with a straight flute, 
the thickness of chips increases with the increase in tapping 
processing, these chips become clogged between the thread of the 
tap and the workpiece, and the thread of the tap very frequently 
causes tool breakage. It is considered that the helical milling method 
with thread milling cutters in thread tapping is effective against 
problems associated with tapping chips. Thread milling is a method 
of producing a screw thread by a milling operation [1]-[3]. Internal 
thread milling operation is possible for stable operation because 
chips are divided and chip clogging can be prevented. However, for 
internal thread tapping of chromium-molybdenum steel, there are no 
studies examining how to improve tool damage of pipe thread taps. 

On the other hand, in order to improve resistance fractures of the 
thread milling cutter, cemented carbide, which has good fracture 
toughness, is often used as the substrate material for the tap. The 
physical vapor deposition (PVD) method is a widely used coating 
technology.

An aluminum/chromium-based coating film, namely (Al,Cr)N 
coating film, has recently been developed. An aluminum/chromium-
based coated tool was evaluated through the machining of sintered 
steel, and showed greatly improved performance [4]. It was clarified 
that the (Al,Cr)N-coated cemented carbide is an effective tool 
material for cutting hardened sintered steel [5]. To improve both 
the scratch strength and the micro-hardness of the (Al,Cr)N coating 
film, the cathode material of an aluminum/chromium/tungsten 
target was used in adding tungsten (W) to the cathode material of 
the aluminum/chromium target [6]-[8].  Furthermore, to improve 
the tool life in cutting hardened steel, the cathode material of an 
aluminum/chromium/tungsten/silicon target was used in adding 
silicon (Si) to the cathode material of the aluminum/chromium/
tungsten target [9]. In this report, the new (Al60, Cr25, W15)(C, N) 
coating film has both high hardness and good adhesive strength, and 
can be used as a tool material in cutting hardened steel.

However, it is not clear whether these coating films are effective 
tool materials for helical milling with a thread milling cutter.

In this study, chromium-molybdenum steel (ISO 34CrMo4, 
AISI 4137) was helical milled with two physical vapor deposition 
(PVD)-coated cemented carbide end thread milling cutters in 
order to determine effective tool materials for tapping chromium-
molybdenum steel. The coating films used were (Ti,W)N/(Ti,W,Si)
N and commercial (Ti,Al)N coating films. The inner layer of the 
(Ti,W)N/(Ti,W,Si,Al)N coating system is (Ti,W)N coating film, and 
the outer layer is (Ti,W,Si,Al)N coating film. In order to identify an 
effective tool material for thread tapping of chromium-molybdenum 
steel, tool wear was experimentally investigated.

The main results obtained are as follows: 
(1) The critical scratch load measured value by the scratch tester of 

the (Al60,Cr25,W15)(C,N)/(Al53,Cr23,W14,Si10)(C,N) coating 
film was over 130 N. 

(2) In thread tapping of chromium-molybdenum steel at a cutting 
speed of 1.00 m/s, the tool wear width of the (Al60,Cr25,W15)
(C,N)/(Al53,Cr23,W14,Si10)(C,N)-coated tool was smaller than 
that of the (Al,Cr)N-coated tool. 

( 3 )  I t  w a s  p o s s i b l e  f o r  t h e  ( A l 6 0 , C r 2 5 , W 1 5 ) ( C , N ) /
(Al53,Cr23,W14,Si10)(C,N)-coated thread milling cutter to 
perform stable tapping for a long period. 

The above results clarify that the (Al60,Cr25,W15)(C,N)/
(Al53,Cr23,W14,Si10)(C,N) coating film, which is a new type 
of coating film, has both high hardness and good adhesive 
strength, and can be used as a coating film for WC-Co cemented 
carbide cutting tools. Moreover, the new (Al60,Cr25,W15)(C,N)/
(Al53,Cr23,W14,Si10)(C,N) coating film can be used as a tool 
material in thread tapping of chromium-molybdenum steel.
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40 Tool Wear of Sintered Cubic Boron Nitride Compact in Cutting Hardened Steel with High-Pressure Coolant Supplied

　Hardened steel is used for dies and molds, and is quenched 
and tempered to improve its mechanical properties and wear 
resistance. For dimensional accuracy, hardened steel is machined 
by the metal removal process. High-speed cutting is an effective 
method of improving productivity. As, the cutting temperature 
rises very high in high-speed cutting, the tool materials require 
both good wear-resistance and heat-resistance, and the cutting 
parts must be cooled for efficacy and efficiency.
　Polycrystalline cubic boron nitride compact (cBN) seems to be 
an effective tool material because it has better features as a tool 
material such as hardness, heat-resistance, etc. There are many 
studies on the tool wear of cBN tools [1, 2, 3, 4]. However, the 
cutting performance of cBN tools depends on the content of both 
the cBN grain and the binding phase [5], the binding phase [6]. 
Therefore, an effective binding phase, etc. for cBN tools should 
be selected for cutting hardened steel.
　High-pressure coolant cutting is effective for reducing the 
cutting temperature. For this reason, many studies on high-
pressure coolant cutting have recently been carried out. 
　Itakura et al. [7] reported that high speed cutting of Inconel 
718 was attempted at increased cutting fluid flow rate by 
injecting fluid at a high pressure to the cutting edge. As a result, 
as the injection speed of the cutting fluid went up, the cutting 
temperature was reduced and flank wear was reduced. Thus, 
high-pressure coolant cutting is considered effective for reducing 
tool wear [8, 9, 10]. Further, the improvement of chip control, 
particularly chip breaking performance, is also expected by the 
high-pressure coolant supplied [11].
　However, the influences of both the cutting speed and the 
coolant pressure on merchantability in high-speed cutting 
hardened steel with high-pressure coolant supplied have not 
been reported.
　In this study, hardened steel was turned with high-pressure 
coolant supplied, the chip configurations, the tool wear and 
the surface roughness were experimentally investigated. The 
hardened steel used was an ASTM D2 cold-worked die steel 
(60HRC).
　The results are as follows:
(1) In turning with high-pressure coolant supplied, the 
effectiveness of chip breaking performance was improved. 
In this case, the chip length was shorter with the increase of 
the coolant pressure, and the chip length was longer with the 
increase of the cutting speed.
(2) In the case of a cutting speed of 10.00 m/s, large wear on 
the flank face was observed in dry cutting. It was possible to 
suppress the tool wear on the flank face with high-pressure 
coolant supplied.
(3) In the high-pressure coolant cutting method of hardened steel 
with a cBN tool at a cutting speed of 10.00 m/s, the cBN grain 
size of 5.0 µm, 45 cBN grain/55 binding phase and main element 
of the binder phase of TiCN-Al was an effective tool material. 
And, the surface roughness by cutting with this cBN tool was 
almost constant up to a cutting distance of 1080 m.
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41Cutting Performance of Electroplated Diamond Drill with V-Shaped Groove and through Coolant Hole in Drilling Cemented Carbide

Cemented carbides have been developed as a material for 
cutting tools. They was first demonstrated at the Spring Fair at 
Leipzig in 1927, cutting cast-iron and 12% manganese steel at 
2-3 times the normally accepted cutting speeds [1]. Due to the 
excellent mechanical properties of cemented carbides, such as 
compressive strength, hardness and toughness they are used for 
wear resistant material [2], such as drawing dies, molds, rolling 
rolls etc., in addition to the cutting tool. Cemented carbides are 
generally machined to improve the dimensional accuracy after 
sintering. Owing to the high material hardness, machining is 
generally performed with diamond grinding wheels [3]. Resin-
bonded diamond wheels are usually used for grinding various 
cemented tungsten carbides [4]. 

For machining difficult-to-cut materials, such as tungsten 
carbide, micro-electrical discharge machining (EDM) is one 
of the most effective methods for making holes because the 
hardness is not a dominant parameter in EDM [5]. However, as 
die sinking EDM requires the use and subsequent production 
of tool electrodes, machining time is longer and costs higher 
than cutting methods such as milling by a machining center [6]. 
The method with a diamond drill is considered one of the most 
effective methods for making holes. There have been many 
studies on drilling ceramics by diamond drills [7-9]. However, 
few studies on drilling cemented carbides have been reported.

Cutting Performance of Electroplated Diamond Drill with 
V-Shaped Groove and Through Coolant Hole in Drilling 
Cemented Carbide

In this study, cemented carbides were holed by electroplated 
diamond drills with a through coolant hole. Two types of drills 
with different flute shape, namely with a V-groove and without 
a V-groove, were used. Furthermore, two types of cemented 
carbides with different hardness were used, too.

The following results were obtained:
(1) None of the drilled holes showed noticeable burrs or corner 

dullness.
(2) The main tool failure of the electroplated diamond drill was 

the flaking of the diamond layer on the drill tip.
(3) The addition of the V-groove on the drill tip extended the 

tool life by 1.7 times.
(4) Both the drilled hole’s diameter of the entrance side and that 

of the outlet side decreased with the increase of the drilled 
hole length. 

(5) The tool life of the electroplated diamond drill was dependent 
on the hardness of the cemented carbide.
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Hardened steels used for dies or molds are widely cut as 
a substitute for grinding. Polycrystalline cubic boron nitride 
(cBN) compact tools are used for cutting hardened steels, due 
to their high hardness and high thermal conductivity. However, 
in milling, major tool failure of cBN readily occurs by fracture 
because cBN has poor fracture toughness. Coated cemented 
carbide is an effective tool material for milling hardened steels 
because it has good fracture toughness and wear resistance. The 
physical vapor deposition (PVD) method is widely applied to 
cutting tools because it enables the application of coatings at 
relatively low treatment temperature and high adhesion of the 
deposition to the substrate. In this case, titanium based films 
(e.g. TiN, (Ti,Al)N) are generally used as the coating film [e.g. 
1, 2].

An aluminum/chromium-based coating film, namely (Al,Cr)
N coating film, has recently been developed. An aluminum/
chromium-based coated tool was evaluated through the 
machining of sintered steel, and showed greatly improved 
performance [3]. It was clarified that the (Al,Cr)N coated 
cemented carbide is an effective tool material for cutting 
hardened sintered steel [4]. To improve both the scratch 
strength and the micro-hardness of the (Al,Cr)N coating film, 
the cathode material of an aluminum/chromium/tungsten target 
was used in adding tungsten (W) to the cathode material of the 
aluminum/chromium target [5,6].  Furthermore, to improve the 
wear-resistance of the cutting tool, the cathode material of an 
aluminum/chromium/tungsten/silicon target has been developed 
in adding silicon (Si) to the cathode material of the aluminum/
chromium /tungsten target. However, it is not clear whether 
aluminum/chromium/tungsten/silicon-based-coating films are 
effective tool materials for milling hardened steel.

In this study, hardened steel was milled with three PVD-
coated cemented carbide end mill cutters in order to clarify 
effective tool materials for milling hardened steel (AISI D2, 
60HRC) at the cutting speed of 2.5 m/s. The coating films used 
were two types of aluminum/chromium/tungsten/silicon-based-
coating films and (Ti,Al)N-coating film. The tool wear of three 
PVD-coated end mill cutters was experimentally investigated in 
milling hardened steel.

The main results obtained are as follows:
(1) In milling hardened steel at a cutting speed of 2.5 m/s, Type 

II coating film was the best coating material among the three 
types of coated film. The Type I coating film was superior to 
the (Ti,Al)N-coating film. 

(2) The critical scratch load of both Type I and Type II of over 130 
N was larger than that of the (Ti,Al)N-coating film of  65 N. 

(3) The multi-layered structure is expected to improve the tool 
life.
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An aluminum-chromium based coating film has been 
developed. Comparing the performance of AlCrN coated tool 
inserts with that of TiN coated ones, the former can achieve 
approximately 33% more depth of cut and can attain higher 
cutting speed due to better thermal resistance of the coated 
inserts [1]. In milling, the tool life of the end mills with the 
TiAlN coating is much lower as compared to the cutting tools 
with the AlCrN coatings [2-3].  As a result, the wear progress of 
the AlCrN coated cemented carbide tool was slower than that of 
the TiN or the TiAlN coated cemented carbide tool. However, 
the results of our study indicate that the critical scratch load, 
which is the value measured by the scratch test, of the AlCrN 
coating film is 77 N and the micro-hardness is 2760 HV0.25N. 
Therefore, in order to improve both the scratch strength and the 
micro-hardness of the AlCrN coating film, cathode material of an 
Al-Cr-W target was used in adding tungsten (W) to the cathode 
material of the Al-Cr target [4]. The AL-Cr-W based coating film 
has both high hardness and good adhesive strength, and can be 
used as a coating film of WC-Co cemented carbide cutting tools 
[4]. Furthermore, the addition of W reduces friction [5-6].

The addition of Si to TiN coatings transforms the [111] 
oriented columnar structure into a dense finely grained structure, 
and thin films of Ti-Si-N have been deposited by physical vapor 
deposition to improve the wear resistance of TiN coatings 
[7]. Cutting experiments have shown that the TiAlSiN coated 
end mill with Si content of 4.78 at.% had the least flank wear, 
the milling distance of which was improved about 20% more 
than the TiAlN coated end mill. Furthermore, the hardness of 
the AlCrSiWN coating film is higher than that of the AlCrN 
at temperatures below 700 degrees Celsius, and the addition 
of Si leads to grain refinement and significantly affects the 
phase composition and the mechanical properties owing to the 
formation of amorphous Si3N4 and .

Many multi-layer coating materials to improve the tool life 
have been developed. The wear progress of the multilayered 
AlCrWCN/AlCrWSiCN-coated tool was slower than that of the 
monolayer AlCrWSiCN-coated tool in cutting hardened steel at 
a feed rate of 0.2 mm/rev. However, the tool wear of the multi-
layer AlCrWN/AlCrWSiN-coated tool has not been clarified. 
The characteristics of the multi-layer AlCrWN/AlCrWSiN-
coated coating film have also not been clarified.  

In this study, in order to clarify the effectiveness of the multi-
layer AlCrWN/AlCrWSiN-coated cemented carbide tool, the 
wear progress was investigated in cutting hardened sintered steel 
using the three types of coated tools. Namely, Tool I had the 
dual-layer (Al60,Cr25,W15)(C,N)/(Al53,Cr23,W14,Si10)(C,N)-
coating film, Tool II had the multi-layer (Al60,Cr25,W15)(C,N)/
(Al53,Cr23,W14,Si10)(C,N)-coating film and Tool III had the multi-
layer (Al60,Cr25,W15)N/(Al53,Cr23,W14,Si10)N-coating film.

The following results were obtained:
(1) The main tool failure of the three types of coated tools was 

the flank wear within the maximum value of the flank wear 
width of 0.2 mm. 

(2) The critical scratch load of the three types of coated tools 
was 130 N or more.

(3) The micro-hardness of Tool III 3000 HV0.25N was highest 
among the three types of coated tools.

(4) The mean value of the friction coefficient of the 
(Al53 ,Cr23 ,W14,Si10)N coat ing  f i lm,  0 .21 ,  was 
approximately half that of the (Al53,Cr23,W14,Si10)(C,N) 
coating film, 0.41.

(5) In the case of the higher cutting speed, the wear progress of 
the multi-layer coating system was slower than that of the 
dual-layer coating system.

(6) In the case of cutting hardened sintered steel using the multi-
layer coated tool, the wear progress of the Type III coated 
tool was slower than that of the Type II coated tool.
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