
1.  Introduction

A quiver is an oriented graph with a finite number

of vertices.  In the present notes, we will consider every-

thing over the complex number field .

Let Q be a quiver with r vertices.  We label each ver-

tex of Q such as 1, 2, … , r and choose an r-tuple of non-

negative integers d= (d1,…, dr) (that is, di corresponds to

the vertex i. Then the group Gd=GL(d1) ×…× GL(dr)

naturally acts on the vector space M(dt, ds) of dt×ds

matrices by g・x= gtxgs
-1 for g= (g1,…, gr)∈Gd and x∈

M(dt, ds), and also on the direct sum Rd(Q)= s→ t in Q M(dt,

ds). In the case of di= 0, we will regard as GL(di)={1},

M(di, dj)={0}, and so on. Thus we have the representa-

tion (Gd, Rd(Q)), which is called a representation associat-

ed with the quiver Q.

A quiver Q is called to be finite-type (resp. tame-

type) if its underlying graph is one of Dynkin diagrams

Al, Dl, E6, E7, or E8 (resp. extended Dynkin diagrams 
~
Al,

~
Dl, 

~
E6, 

~
E7, or 

~
E8 (see Kraft and Riedtmann [5],§1). For

example, the following one-way-oriented quivers are

tame-type:

In fact, it is known that a quiver Q is finite-type (resp.

tame-type) if and only if its corresponding quadratic

form qQ is positive definite (resp. positive semi-definite),

where qQ is defined by qQ(x)=Σr

i=1xi
2－Σs→ t in Q xt xs for

x= t(x1,… , xr)∈ r (column vectors whose entries are

rational numbers).

In general, we call (G,V) a prehomogeneous vector

space (abbrev. PV) if V has a Zariski dense G-orbit, where

G is a linear algebraic group acting rationally on a finite-

dimensional vector space V.  Each point of the Zariski

dense orbit is called a generic point.  A non-constant

rational function f on V is called a relative invariant of

(G,V) if there exists a rational characterχof G satisfying

f (g・v)=χ(g) f (v) for any g∈G and v∈V.  Then we say

that f is a relative invariant corresponding to χ.  Let

X(G) be the group of all rational characters of G and put

X1(G)={χ∈X(G);χ|H=1}, where H= { g∈G; g・v= v } is

the isotropy subgroup at a generic point v. (We call H a

generic isotropy subgroup. This, of course, depends on v

but it is uniquely determined up to isomorphic.) Note

that X1(G) does not depend on the choice of a generic

point v.  Since X(G) is a free abelian group, so is X1(G).  In

fact, it is known that if X1(G)=〈χ1, … , χm〉; i.e., χ1, … ,
χ

m is a basis of X1(G) and if f1, … , fm are relative invari-

ants corresponding to χ1, … , χm respectively, then fi’s

are algebraically independent, and moreover, any rela-

tive invariant f of (G,V) can be expressed uniquely in the
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form f =cf 1
e1 … fm

em for some c∈ × and ei∈ (see

Kimura [2],§2.2).  Each fi is called a basic relative invari-

ant.  Therefore, the rank of X1(G) is nothing but the num-

ber of basic relative invariants, and to calculate it is very

fundamental to the study of (G, V).

Ringel had already determined prehomogeneous

vector spaces associated with tame-type quivers (see

[8]), but it was somewhat difficult to know whether a

representation (Gd, Rd(Q)) for given d=(d1, … , dr) and Q

is a prehomogeneous vector space. In the present notes,

we give a criterion for it by a certain condition on its

dimension d=(d1, … , dr), and we also give an algorithm

to calculate directly the number of basic relative invari-

ants (see§5).  Our strategy is based on the theory of pre-

homogeneous vector spaces, especially castling transfor-

mation and a certain PV-equivalent (see §3).

Note that (Gd, Rd(Q)) cannot be a PV if Q has a loop,

because there exists a non-constant absolute invariant

(see, for example, Koike [4], Theorem 1).  Hence we are

interested in tame-type without loop.

2.  Preliminaries

Let Rd(Q)= s→ t in Q M(dt, ds) be a representation

associated with a quiver Q.  Then a subgroup G1× …×

Gr⊆Gd (here Gi⊆GL(di)) also acts on each component

M(dt, ds).  We will write this action by ○
Gs → ○

Gt, and simply

○
ds → ○

Gt in the case of Gs= GL(ds).

Example 2.1. For example,

means a representation of Gd = GL(d1)×GL(d2) on Rd(Q)=

M(d2, d1) M(d2, d1).  We check easily that this is a PV if

and only if d1 ≠d2.  In the case of d1=d2, the rational

function f(X,Y)= (det X)/(det Y) for (X,Y)∈Rd(Q) is an

absolute invariant. □

In general, for a subgroup H⊆G1×…× Gr and the

canonical projectionπi : G1× …× Gr → Gi, we callπi (H)

the Gi-part of H.  For a partition (e1, e2 ,… , er) of a posi-

tive integer n, we denote by P(e1,…, er) the correspon-

ding standard parabolic subgroup of GL(n). It is known

that the GL(d1) -part of the generic isotropy subgroup of

○
d1－…－ ○

dr (which is a representation associated with an

arbitrarily oriented Ar-type quiver) is expressed as a

standard parabolic subgroup (see [7], Proposition 3.4).

Next we recall the so-called Coxeter matrices.  Let

U be a non-singular upper triangular matrix of rank r,

and A= (U+tU) its symmetrization.  We define a sym-

metric bilinear form on r× r by b(x,y)= txAy for col-

umn vectors x=(xi) and y=(yi) whose entries are ration-

al numbers. For a vectorα in r, the reflection σα is a

linear transformation on r which is defined by

σα(x) = x－2 α for   x∈ r.

For a standard column vector ei=t(0, … , 1, … , 0), we

writeσei
=σi simply.  We call the composite c=σr 

…σ2σ1

the Coxeter transformation.  It is known that its repre-

sentation matrix (which is called the Coxeter matrix)

with respect to the standard basis e1, … , er is given by

-tU-1U (see Howlett [1], Theorem 2).

Example 2.2. For a quiver Q, we choose the upper trian-

gular matrix U whose (i, j)-th entry is given by

-1  if i＜ j and the vertex i is connected with j,

1 if i = j

0 otherwise.

Then, for a dimension vector d, we see that b(d,d)=

dim Gd－dim Rd(Q).

(1) Let Q= 
~

6 (the one-way-oriented quiver of type

E
~

6 ), which has seven vertices. Then we define the upper

triangular matrix U by

So we can check easily that the 6n-th power of the

Coxeter matrix C=-tU-1U is given by

I7 + n・t (1, 2, 1, 2, 3, 2, 1)(-1, -1, -1, -1, 1, 1, 1)

where I7 denotes the identity matrix of degree 7.  The

characteristic polynomial of the Coxeter matrix C is

(t2+ t +1)2 ( t+1) ( t-1)2.

Example 2.3. Here we will calculate some power of

Coxeter matrices of other tame-type quivers:

(1) The 12n-th power of the Coxeter matrix of 
~

7-

b(α, x)
b(α,α)

1
2
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1 -1 0 0 0 0 0
0 1 0 0 -1 0 0
0 0 1 -1 0 0 0
0 0 0 1 -1 0 0
0 0 0 0 1 -1 0
0 0 0 0 0 1 -1
0 0 0 0 0 0 1

1-n -n -n -n n n n
-2n 1-2n -2n -2n 2n 2n 2n

n -n 1-n -n n n n
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-3n -3n -3n -3n 1+3n 3n 3n
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-n -n -n -n n n 1+n

U=

=

, 



type is given by

I8+ n・t(2, 1, 2, 3, 4, 3, 2, 1) (-2, -1, -1, -1, 1, 1, 1, 1).

The characteristic polynomial of the Coxeter matrix is

(t2+ t+1)(t2+1) (t+1)2(t－1)2.

(2) The 30n-th power of the Coxeter matrix of
~

8-

type is given by

I9+ n・t(3, 2, 4, 6, 5, 4, 3, 2, 1) (-3, - 2, -2, 1, 1 , … , 1).

The characteristic polynomial of the Coxeter matrix is

(t4+ t3+ t2+ t+1) (t2+ t+1) (t+1) (t-1)2.

(3) The un-th power of the Coxeter matrix of
~

p,q-

type is given by

Ip+q+n・t(1,… ,1)(-w, 0 ,… , 0, w),

where u (resp v) is the least common multiple (resp.

greatest common divisor) of p and q, and w= (p+q)/v.

The characteristic polynomial of the Coxeter matrix is

(t p- 1)(tq- 1).

(4) The (l-2)u-th power of the Coxeter matrix of
~

l-

type is given by

Il+1+u・t(1, 1, 2 ,… ,  2, 1, 1) (-1, -1, 0 ,… ,  0, 1, 1),

where, for n∈ , we put u=2n if l is odd; and u=n if l

is even.  The characteristic polynomial of the Coxeter

matrix C is (t l-2-1) (t-1)(t+1)2.

3.  PV-equivalence

In this section, we recall two transformations

among prehomogeneous vector spaces.

Proposition 3.1 ([2], Theorem 7.3 and Proposition 7.5).

The outer tensor representation V Vn of an m-dimen-

sional representation V of a linear algebraic group G

and the standard representation of GL(n) (n<m) is a

PV if and only if V＊ Vm-n is a PV. Then both generic

isotropy subgroups are isomorphic, and the number

of basic relative invariants of V Vn is equal to that of

V＊ Vm-n. □

We call V＊ Vm-n the castling transform of V Vn,

and we say that they are castling-equivalent.

In general, a vertex s of a quiver Q is called a sink

(resp. source) if all edges connecting with s are oriented

toward s (resp. not oriented toward s).  Sources and

sinks are called admissible vertices. We can apply

castling transformation to an admissible vertex if the

dimensional condition is satisfied.

Example 3.2. Consider the following quivers:

For a four-tuple d=(d1 , … , d4) of positive integers, con-

sider the representation Rd(Q). Then we see that

where Vn is the standard representation of GL(n) and 

V＊n its dual. Hence, if 
_
d3 : = d1+ d2+ d4- d3 > 0, the

castling transform of (3.1) is given by

(3.2) (Vd1
Vd2

Vd4
) V

_
d3

,

Since GL(
_
d3) is reductive, the representation (3.2) is iso-

morphic to

(3.3) (Vd1
Vd2

Vd4
) V＊_

d3
,

as PV’s (see [2], §7.4). Thus we see that (3.3) is isomor-

phic to the representation R _
d(

_
Q) of dimension 

_
d= (d1, d2,

_
d3, d4); i.e., this is the castling transform of Rd(Q).  Note

that the dimension 
_
d is nothing but the reflection of d

with respect to the vertex 3; that is,  
_
d=σ3(d). □

In a similar argument to the above, we can apply

castling transformation to any admissible vertex if the

dimensional condition is satisfied.

Remark 3.3. (1) Let us consider Rd(Q) and Rd' (Q' ):

(here Rd(Q) is a representation associated with an 
~
E6-type

quiver, and Rd' (Q' ) is regarded as one associated with

three A2-type quivers, which is a PV). If d1+ e1+ f1 n the

representation Rd(Q) is a PV.  Moreover we see, by direct

calculation, that the difference between the number of

basic relative invariants of Rd(Q) and that of Rd' (Q' ) is

given by

0 if  d1 + e1+ f1< n

1 if  d1 + e1+ f1= n.
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Rd(Q)=M(d1, d3) M(d2, d3) M(d4, d3)

V＊d1
Vd3

V＊d2
Vd3

V＊d4
Vd3

(3.1) (V＊d1
V＊d2

V＊d4
) Vd3

,

.



So we will say that Rd(Q) can be obtained from Rd' (Q' ). In

fact, if the dimension (corresponding to an admissible

vertex) of a representation associated with a tame-type

quiver satisfies such a condition, it must be a PV

because it can be regarded as a representation associat-

ed with some finite-type quivers.

(2) Hence, for a representation Rd(Q), there exists an

admissible sequence i1, i2 , … , ip such that σip

…σi2

(d) >/ 0, then it is a PV, where we say that i1, i2 , … , ip is

an admissible sequence if we can apply castling transfor-

mation to vertices i1, i2 , … , ip successively.

Lemma 3.4. Let Q be a quiver of type 
~
Al without loop

(resp.  
~
Dl, 

~
E6, 

~
E7, or  

~
E8), and assume that the represen-

tation (Gd, Rd(Q)) is not a PV. Then it is castling-equiv-

alent to a representation associated with the one-way-

oriented quiver
~

p,q (resp. 
~

l,
~

6,
~

7, or
~

8).

Proof.
~
Al -type: Let the vertex s be a sink and t a source,

and assume that s +1, s +2 , … , t-1 are not admissible.

First we consider the case where s-1 is a source as fol-

lows:

Then, applying castling transformation to s, s +1 , … ,

t-1 successively, we see that t-1 becomes a source, and

that the number of sinks and sources is reduced by just

two.  Next suppose that s-1 is not admissible. Then,

applying castling transformation to s, s +1 , … , t-1 suc-

cessively, we see that s-1 (resp. t-1) becomes a sink

(resp. source). Thus it comes down to the first case.
~
Dl-type: We may assume that 1, 2 , … , s-1 (s 4)

are not admissible, and that s is a sink. Then, applying

castling transformation successively, we see that s+1

becomes a sink. Continuing this, we obtain our asser-

tion. The proof for 
~
E6, 

~
E7, or  

~
E8-type is similar. Applying

castling transformation to vertices from the tip of the

graph, we have our assertion. ■

Proposition 3.5 ([3], Theorems 1.14 and 1.16, and

Proposition 1.18) Let Wi be an mi-dimensional repre-

sentation of a linear algebraic group G (i=1,2).

Assume that n max{ m1, m2}.

(1) The outer tensor representation W1 W2 is a PV

if and only if the direct sum
~
W : = W1 Vn W2 Vn

＊ is

a PV, where Vn is the standard representation of GL(n)

and V＊n its dual.

(2) Let l be the number of basic relative invariants

of the PV W1 W2. Then, that of 
~
W is equal to l+1 if

n=max{ m1, m2} ; and l if n > max{m1, m2}. □

In general, we say that representations (G1, V1) and (G2,

V2) are PV-equivalent if the condition that (G1, V1) is a PV

is equivalent to the one that the other is so.  For exam-

ple, 
~
W = W1 Vn W2 V＊n and W1 W2 in Proposition

3.5 are PV-equivalent if the dimensional condition is sat-

isfied.

Example 3.6. (1) Let us consider Rd(Q) and Rd' (Q' ) of

dimension d= (d1 , … , d5) and d' =(d1, d2, d4, d5) respec-

tively:

Then we see that

On the other hand, we have

Hence, if d3 max{d1+d2, d4+d5}, these Rd(Q) and

Rd' (Q' ) are PV-equivalent, so that we can know the dif-

ference between the number of basic relative invariants

of the PV Rd(Q) and that of Rd' (Q' ).

By a similar argument to the above, if the dimen-

sion di corresponding to an arbitrary non-admissible

vertex i satisfies such a condition, we can regard that

Rd(Q) and Rd' (Q' ) are PV-equivalent, where Rd' (Q' ) is the

representation corresponding to the quiver which is

obtained by removing the vertex i from Q.

4.  Necessary condition to be a PV

Let us consider Rd(
~

p,q); that is, the representation,

of dimension d=(di), associated with the one-way-orient-

ed quiver
~

p,q.

Lemma 4.1. If the dimension d satisfies d1= dp+q and

the inequality
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σi1

Rd(Q)= M(d4, d3) M(d5, d3) M(d3, d1) M(d3, d2)

V＊d4
Vd3

V＊d5
Vd3

V＊d3
Vd1

V＊d3
Vd2

(V＊d4
V＊d5

) Vd3
(Vd1

Vd2
) V＊d3

.

Rd' (Q' ) V＊d4
Vd1

V＊d5
Vd1

V＊d4
Vd2

V＊d5
Vd2

(V＊d4
V＊d5

) (Vd1
Vd2

).



（4.1）

then Rd(
~

p,q) is not a prehomogeneous vector space.

Proof. Suppose that Rd(
~

p,q) is a PV, and put di= min{d2,

, … , dp} and dj = min{dp+1 , … , dp+q-1}.  Then Rd(
~

p,q) is

PV-equivalent to the representation

（4.2）

where ds1
, … , dsk

and dt1
, … , dtk

are subsequences of d2,

… , dp and dp+1 , … , dp+q-1 which satisfy the inequalities

d1> ds1
> … di, di< … < dsk

< dp+q, d1> dt1
> … > dj , and

dj < … < drk
< dp+q respectively.  If (4.2) is a PV, we see

that the representation

（4.3）

should be also a PV.  Since d1 min{di, di}, the represen-

tation (4.3) is PV-equivalent to one associated with
~

1,1

(see Example 2.1). Therefore  (4.3) is not a PV; a contra-

diction. ■

Let us consider Rd(
~

l); i.e., the representation, of

dimension d=(di), associated with the one-way-oriented

quiver 
~

l.

Lemma 4.2. If the dimension d satisfies d1+d2=dl+ dl+1

and the inequality

max{ d1, d2, dl, dl+1} < min{d3, d4 , … , dl-1},

then Rd(
~

l) is not a prehomogeneous vector space.

Proof. Suppose that Rd(
~

l) with such a dimension is a PV

and let di=min{d3 , … , dl-1}.  First we discuss the case

of d1+ d2= dl+ dl+1 di.  Then we see that the represen-

tation

should be a PV. This is PV-equivalent to

（4.4)

Since the representation (4.4) is castling-equivalent to

this is not a PV by Lemma 4.1; a contradiction.

Next we assume that d1+d2= dl+ dl+1 > di. Then

Rd(
~

l) is PV-equivalent to the representation

（4.5)

with dt1
> dt2 > … > di and di< … < dtp

. Therefore, if

(4.5) is a PV, then so is

which is castling-equivalent to

It follows from a similar argument to the first case that

the representation (4.6) is not a PV; a contradiction. ■

Let us consider Rd(
~

6) ; that is, the representation,

of dimension d= (d1, d2 , … , d7), associated with the one-

way-oriented quiver 
~

6.

Lemma 4.3. If the dimension d satisfies d1+d2+ d3+d4

=d5+d6+d7 and the inequalities (1)-(15), then Rd(
~

6) is

not a prehomogeneous vector space.

Proof. Suppose that Rd(
~

6) with such a dimension is a

PV.  Here we consider the case of d1 d5 - d4 and d3 

d5-d2 (we can prove other cases similarly).  First we

note that the GL(d5)-part H of the generic isotropy sub-

group of

is the intersection P(d1, d2- d1, d5-d2)∩ tP(d5-d4, d4-

d3, d3) of two standard parabolic subgroups, and that it is
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d1<min{d2, d3 , … , dp}

+min{dp+1, dp+2 , … , dp+q-1},

(1) d4 - d7 >0

(2) d2 - d7 > 0

(3) d6 - d7 > 0

(4) d2 + d3 - d6 > 0

(5) d1 + d4 - d6 > 0

(6) d5 - d6 > 0

(7) -d3 + d6 > 0

(8) -d1 + d6 > 0

(9) d2 + d4 - d5 >0

(10) -d2 + d5 > 0

(11) -d4 + d5 >0

(12) d1 + d3 - d7 > 0

(13) -d1 + d2 > 0

(14) -d3 + d4 > 0

(15) -d1 - d3 + d5 > 0



contained in the GL(d5)-part of the generic isotropy sub-

group of the PV

Hence, for that the representation  ○H→ ○
d6→ ○

d7 is a PV, it

is necessary that the representation

（4.7)

is a PV.  Since (d1+ d4)+ (d5+ d3) 2d5 and d5 d6 , the

representation (4.7) is PV-equivalent to

which is castling-equivalent to

Here we note that d6 max{d1, d3, d7, d1+d3-d7}.  It fol-

lows from Lemma 4.2 that this is not a PV; a contradic-

tion. ■

Let us consider Rd(
~

7) ; that is, the representation,

of dimension d= (d1, d2 , … , d8), associated with the one-

way-oriented quiver 
~

7.

Lemma 4.4. If the dimension d satisfies 2d1+d5+d3+

d4=d5+d6+d7+d8 and the following inequalities (1)-

(22), then Rd(
~

7) is not a PV.

Proof. Suppose that the representation  Rd(
~

7) with such

a dimension is a PV.  First we consider the case of d3 

d5 -d1 (we can prove the other case similarly).  The

GL(d5)-part of the generic isotropy subgroup of  ○d2 → ○
d3→

○
d4 → ○

d5 ← ○
d1 is contained in that of  ○P1 → ○

d5 ← ○
P2, where

P1= P(d1+ d4- d5, d5- d4)⊂GL(d1) and P2=P(d2, d3- d2)⊂

GL(d3).  Hence the representation

(4.8)

should be a PV. The parabolic subgroup P1 (resp. P2) is

the GL(d1)-part (resp. GL(d3)-part) of the generic isotropy

subgroup of the representation

Thus, since d1+ d3 d5 and d5 d6, the representation

(4.8) is PV-equivalent to 

It follows from Lemma 4.3 that this is not a PV; a con-

tradiction. ■

Let us consider Rd(
~

8) ; that is, the representation,

of dimension d=(d1, d2 , … , d9) , associated with the one-

way-oriented quiver 
~

8.

Lemma 4.5. If the dimension d satisfies 3d1+ 2d2+ 2d3=

d4+ d5+ d6 + d7+ d8+ d9 and the following inequalities

(1)-(29), then Rd(
~

8) is not a PV.
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(1) d1 - d8 > 0

(2) d7 - d8 > 0

(3) d4 - d7 > 0

(4) d6 - d7 > 0

(5) d1 + d3 - d6 >0

(6) d5 - d6 > 0

(7) d6 + d7 > d1 + d3

(8) d1 + d4 - d5 > 0

(9) d1 + d3 > d7 + d8

(10) d3 - d8 > 0

(11) d5+ d8 > d1+ d3

(12) d1+ d2 - d7 > 0

(13) -d2 + d7 > 0

(14) d1 + d4 > d6+ d8

(15) -d1 + d6 > 0

(16) d6 + d8 > d1+ d2

(17) -d4 + d5 > 0

(18) d5 + d7 > d1+ d4

(19) -d3 + d4 > 0

(20) -d3 + d6 > 0

(21) -d2 + d3 > 0

(22) -d1 - d2+ d5 > 0

(1) d8 - d9 > 0

(2) d7 - d8 > 0

(3) d6 - d7 > 0

(4) d5 - d6 > 0

(5) d4 - d5> 0

(6) d1 + d3 - d4 > 0

(7) d3 - d9 > 0

(8) d1 - d8 > 0

(9) d3 - d7 > 0

(10) d1 + d2 - d6 > 0

(11) d1 + d3 > d5+ d9

(12) d1 + d2 + d3

- d4 - d8 > 0

(13) d1 + d2 > d7  + d9

(14)  d1 + d3 > d6 + d8

(15) d1 + d2+ d3

- d5 - d7 > 0

(16) -d1 - d2 - d3 + d5

+ d7 + d8 > 0

(17) d1 + d2 + d3 -d5

- d8 - d9 > 0

(18) -d1 - d2 - d3 + d5

+ d6 + d9 > 0

(19) d1 + d2 + d3 - d6

-d7 - d9 > 0

(20) -d1 - d2 - d3+ d4

+ d7 + d9 > 0

(21) d6 + d8 > d1 + d2

(22) d5 + d7 > d1+ d3

(23) -d1 - d2 - d3

+ d4 + d6 > 0

(24)  d5+ d9 > d1 + d3

(25)  d4+ d8 > d1 + d3

(26)  -d2 + d7 > 0

(27)  -d1 + d6 > 0

(28)  -d3 + d5 > 0

(29)  -d1 - d2 + d4 > 0



Proof. Note that the representation Rd(
~

8) is castling-

equivalent to

Suppose that this is a PV.  We consider the case of d7 

d1 (the other case can be proved similarly).  We note that

the GL(d4)-part of the generic isotropy subgroup, at the

standard point, of   d4
○
- d1 ← ○

d4 → ○
d5 → ○

d6 → ○
d7 → ○

d8 → ○
d9

is contained in that of  ○P1 ← ○
d4 → ○

P2, where P1= tP(d9, d8-

d9, d7-d8)⊂ GL(d7) and P2 =tP(d6-d1, d5-d6, d4-d5) ⊂

GL(d4- d1). Hence necessarily the representation

(4.9)

should be a PV. Since d7 + (d4 - d1) d4 and d4 d3, the

representation (4.9) is PV-equivalent to

(4.10)

The group P1 (resp. P2) is the GL(d7)-part (resp.  GL(d4 -

d1)-part) of the generic isotropy subgroup, at the stan-

dard point, of  ○d7 → ○
d8 → ○

d9 (resp. d4
○
-d1 →

d5
○
-d1 →

d6
○
-d1). Therefore the representation (4.10) is PV-equiva-

lent to

which is castling-equivalent to

By Lemma 4.4, this is not a PV; a contradiction. ■

5.  Main Theorem

First, for each one-way-oriented tame-type quiver

Q0, we characterize dimension such that (Gd, Rd(Q0)) is

not a prehomogeneous vector spaces.

Proposition 5.1. Let Q0 be the one-way-oriented quiver

of type
~

p,q (resp. 
~

l,
~

6,
~

7, or
~

8). Then, for an r-

tuple d= (d1 , … , dr) of positive integers, the following

conditions are equivalent, where r is the number of

vertices of Q0.

(1) (Gd, Rd(Q0)) is not a PV.

(2) the dimension d satisfies the equality and

inequalities in Lemma 4.1 (resp.  4.2, 4.3, 4.4, or 4.5).

(3) ck(d)>0 for any integer k∈ , where c =σr
…σ2

σ1 is the Coxeter transformation corresponding to the

underlying graph of Q0.

(4) ck(d)>0 for k = 1, 2 , … , u-1 and cu(d) = d,

where u is defined by 

the least common multiple of p and q if Q0 = 
~

p,q

l-2 for even l ; and 2(l-2) for odd l if Q0=
~

l

6 (resp. 12, 30) if Q0=
~

6 (resp.
~

7,
~

8).

Proof. (2) ⇒ (1) has been proved in Lemma 4.1 (resp.

Lemma 4.2, 4.3, 4.4, or 4.5), and (1) ⇒ (3) is obvious as seen

in Remark 3.3 (2). (3) ⇒ (4): By Examples 2.2 and 2.3, the

dimension d should be contained in the eigenspace with

respect to 1 of cu. (4) ⇒ (2): The condition  cu(d) =d implies

the equality, and the other implies the inequalities. ■

Theorem 5.2. Let Q be a tame-type quiver without loop.

Then, for the representation (Gd, Rd(Q)) of dimension d,

the following conditions are equivalent:

(1) the representation (Gd, Rd(Q)) is not a PV.

(2) For any admissible sequence i1, i2 , … , ip, we

haveσip

…σi2
σi1

(d) > 0.

Proof. (1)⇒ (2) is obvious.  Suppose that the condition (2) 

holds. Then, it follows from Lemma 3.4 that we can

choose an appropriate admissible sequence, so that (Gd,

Rd(Q)) is castling equivalent a representation associated

with a one-way-oriented quiver. Thus we obtain our

assertion by Proposition 5.1. ■

In other words, we have characterized the PV’s

associated with tame-type quivers:

Corollary 5.3. Let Q be a tame-type quiver without

loop. Then, for the representation (Gd, Rd(Q)) of dimen-

sion d, the following conditions are equivalent:

(1) the representation (Gd, Rd(Q)) is a PV.

(2) there exists an admissible sequence i1, i2 , … ,

ip, such thatσip

…σi2
σi1

(d) >/ 0. □

In particular, we may say that a prehomogeneous

vector space associated with a tame-type quiver can be

obtained from a representation associated with some

finite-type quivers.

Remark 5.4. (1) Let (Gd, Rd(Q)) be a representation associ-

ated with a tame-type quiver Q. We determine whether
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it is a PV as follows: First we try to make arrows to be

one-way-oriented as in the proof of Lemma 3.4; that is,

we apply castling transformation successively to an

appropriate vertices i1, i2, … , ip.  If σik

…σi2
σi1

(d) >/ 0, as

seen in Remark 3.3, the representation (Gd, Rd(Q)) can be

obtained from a representation associated with some

finite-type quivers, so that it is a PV.  If not, it is castling

equivalent to a representation associated with a one-

way-oriented quiver. Hence, we check easily by

Proposition 5.1 whether it is a PV.

Anyway, if (Gd, Rd(Q)) is a PV, then it can be

obtained from a representation associated with some

finite-type quivers.  It is known that the number of basic

relative invariants of such a PV can be calculated direct-

ly by the orientation of arrows and its dimension (see

[6]).  Thus we know how many relative invariants the PV

(Gd, Rd(Q)) have.

(2) The inequality (4.1) guarantees that there exist

more than one non-constant relative invariants corre-

sponding a common character. In other words, there

exists a non-constant absolute invariant, which were

obtained by Koike [4].

(3) In our strategy to determine whether a given

(Gd, Rd(Q)) is a PV, it is essential that some power of

Coxeter matrix can be calculated easily.  Indeed, each

characteristic polynomial of Coxeter transformation of

tame-type (i.e., extended Dynkin diagram) is a product of

some cyclotomic polynomials (recall Examples 2.2 and

2.3). In general, it is known that for a Coxeter matrix its

characteristic polynomial is a product of some cyclotom-

ic polynomials if and only if it is weakly periodic (see M.

Sato [9]).
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