【1】ある単糖を水素化ホウ素ナトリウムで還元したところ、2種類の糖アルコールが得られた。得られた2種類の糖アルコールの内、一方はガラクトースを同様に還元して得られる他アルコールと同じものであった。この単糖として考えられる全ての構造をFischerの投影片で書きなさい。

【2】以下の酵素反応についての問いに答えなさい。

\[E + S \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} ES \overset{k_2}{\rightarrow} E + P \]

ただし、E、S、Pはそれぞれ酵素、基質、生成物を表し、\(k_1, k_{-1}, k_2 \)は各反応の反応速度定数とし、最大反応速度は\(V_{max} \)、ミカエリス定数は\(K_s \)とする。

(1) 生物Eの初期反応速度を\(v \)とする時、ミカエリス-メンデンの式を導出しなさい。

(2) (1)で導出した式を変形し、実験的に最大反応速度\(V_{max} \)、ミカエリス定数\(K_s \)を求める方法を説明しなさい。
【3】下記のビルビン酸代謝に関する問いに答えなさい。

ビルビン酸はミトコンドリアに入り、有酸素条件下で脱水素酵素複合体と補酵素NAD⁺と(a)によって酸化、チオエステル化されてアセチル-CoAとなる。アセチル-CoAは酵素の触媒作用によって(b)オキサロ酢酸と反応して(c)となる。下記はアコニターゼにより中間体cis-アコニート酸を経て(d)となり、さらに酵素とNAD⁺により酸化、脱炭酸されて(e)となり、CO₂を生成する。(f)は酵素とNAD⁺及び(g)により酸化、脱炭酸され、スクシニール-CoAとなり、CO₂を生成する。スクシニール-CoAは酵素により(h)となり、このとき高エネルギー化合物である(i)を生成する。(j)は酵素と補酵素(k)により酸化され、フマル酸となり、さらに酵素(l)によりH₂Oが付加されて(i)となる。(j)は酵素とNAD⁺により酸化されてオキサロ酢酸となる。

(1) 上の文章の空白(a)〜(i)に適切な語句を入れなさい。

(a) () (b) () (c) ()
(d) () (e) () (f) ()
(g) () (h) () (i) ()

(2) 無酸素条件の酵母細胞において行われるビルビン酸代謝反応の名称を答えなさい。

(3) 下線部(1)の物質の構造式を書きなさい。

(4) 上記のアセチル-CoAからオキサロ酢酸生成に至る代謝過程の名称を答えなさい。

(5) ビルビン酸1分子が上記の代謝過程及び電子伝達系でCO₂とH₂Oに完全に分解される時に生成されるATP数を答えなさい。
(計算過程も示すこと)