<u>4C161</u> 2012 シラバス

生物化学工学実験 I (Experiments in Biochemical Engineering I)

4年・後期・2単位・選択 物質化学工学科(生物化学工学コース) 担当 直江一光、伊月亜有子

[準学士過程(本科 1-5 年) 学習教育目標] (2) [システム創成工学教育プログラム 学習・教育目標] D-1 (100%) 〔JABEE 基準〕

(d-2b), (d-2a)

「講義の目的〕

生物化学工学(基礎生物化学工学)および生物工学(生物化学、生物機能化学、微生物工学)に 関連した実験を行い、実験を通して理解を深める。また、より幅広い知識を習得するために化学 応用工学実験の一部のテーマについても実験を行う。

[講義の概要]

3、4年次の講義の内容を基礎とした生物化学工学、生物工学および化学工学に関連した実験を行う。講義で得た知識を確実なものにするために行う。全ての実験に対して、報告書を作成して指導教員と個別にディスカッションし、データの整理法と報告書の作成法を修得する。

[履修上の留意点]

関連する講義内容を予め復習して実験の原理を理解しておくこと。 実験時は安全のため作業服、安全メガネ (ガイダンス時に指示する) を着用すること。

〔到達目標〕

毎回、実験レポートを提出させて、ディスカッションを行い、理解を深める。

〔評価方法〕

各実験のレポート (50%)、ディスカッション (20%) および実験態度 (30%) により評価を行う。 未提出レポート (提出期限遅れを含む) がある場合には評価は 60 点未満とする。また正当な理由 なき欠課については減点し、欠課時数が 20 を超えた学生については評価しない。

〔教科書〕

プリント(ガイダンス時に配布する)および奈良高専物質化学工学科作成 物質化学工学実験書

[補助教材・参考書]

ポケコンおよびプログラミングマニュアル

[関連科目]

生物化学工学(基礎生物化学工学)および生物工学(生物化学、微生物工学、生物機能化学)についての理解を必要とする。またデータ処理のためにポケコン(BASIC 言語)を使いこなせることが必要である。

<u>2012 シラバス</u> <u>4C161</u>

講義項目・内容

講教 垻日 『 7 谷 「			
週数	講義項目	講義内容	自己 評価*
第1週	ガイダンス	各実験テーマの概要について解説する。	
第2週	データ解析法	各実験テーマのデータ解析法・プログラミング等について 解説する。	
第3週	タンパク質の定量	Lowry 法によるタンパク質定量を行い、分光光度計の使用 方法を習得する。	
第4週	DNA の変性	DNA の熱変性実験を行い、DNA の構造安定性について学ぶ。	
第5週	ゲルろ過クロマト グラフィー	ゲルろ過クロマトグラフィーによりタンパク質の精製を 行い、その原理を理解する。	
第6週	タンパク質の電気泳動	タンパク質を電気泳動により分離精製し、その原理を理解 する。	
第7週	飲料中の有機酸量の 定量	高速液体クロマトグラフィーを用いて、飲料中に含まれる 乳酸濃度を求める。	
第8週	食品中の生菌数測定	希釈平板法を用いて、生菌数の測定法を学ぶ。	
第9週	微生物の接種と培養	培地の調製、滅菌法および植菌を学ぶ。	
第 10 週	微生物の顕微鏡観察	微生物の形態を観察し、併せて顕微鏡操作、微生物取扱法 を習得する。	
第11週	振とう培養装置の 酸素吸収速度	亜硫酸ナトリウムの酸化反応を用いて、振とう培養装置に セットした三角フラスコ内での酸素吸収速度を測定する。	
第 12 週	菌体による酸素消費 速度	培養装置設計の基礎となる好気性菌の酸素消費速度を測定し、Michaelis-Menten式に準拠して解析する。	
第 13 週	高分子マイクロカプセル の調製とその粒子径測定	界面重合法によるナイロン膜マイクロカプセルの調製お よびその粒子径測定	
第 14 週	高分子の分子量測定	ポリスチレンの粘度平均分子量の測定	
第 15 週	ディスカッション	各実験テーマについてディスカッションを行う。	
* 4 · 完全/	こ理解した 3・ほぼ理解した 2	: やや理解できた、1:ほとんど理解できなかった、0:まったく理解できな	かった

*4:完全に理解した、3:ほぼ理解した、2:やや理解できた、1:ほとんど理解できなかった、0:まったく理解できなかった。 (達成) (達成) (達成) (達成) (達成)