# 回転水中紡糸法による Au-Sn 合金細線の開発

島岡 三義 和田 基\*

## Development of Au - Sn Alloy Fiber by the In-Rotating-Water-Spinning Process

## Mitsuyoshi SHIMAOKA and Motoi WADA\*

The spinnability of pure gold on the In-Rotating-Water-Spinning process is not good because of the low formability of the oxide film around the molten gold jet. The development of continuous fiber of Au-Sn alloy by this spinning method has been performed in order to clear the effect of the addition of Sn on the spinnability. The relation of the amount of Sn and its spinnability have been examined. In Au-20wt%Sn alloy, very long fiber of 12 m with circular cross section was obtained at the conditions of 120 $\mu$ m in the nozzle diameter, 3.33 s<sup>-1</sup> in the rotating drum velocity, 0.40 MPa in the ejection pressure and 0.803 rad in the incidence angle of jet. In Au-Sn alloy, the amount of Sn decreases by 0.6wt%(1 at%), the wire length shortend to around 100 mm.

### 1. はじめに

金(Au)の比重が19.8程度であり、オスミウムやイリ ジウムに次いで地球上で最も重い部類の金属である。従 来,このように密度が大きい材料での回転水中紡糸の研 究報告例は見あたらない。Au 線は鋳造によって得られた 棒材を伸線加工されて製造されるが、回転水中紡糸法に より、溶湯から1パスで直径が0.2mm程度の連続細線が 製作可能になれば、細線製作プロセスが大幅に合理化さ れ,それに伴いコストも大幅に削減できる。筆者らは, 純 (99.99wt%) Au の静止水中噴射および回転水中噴射実 験を行って回転水中紡糸性を調査したが、得られた凝固 物は球形粒子またはそれらが合体したひょうたん型であ り、連続細線の製作はきわめて困難であるとの結果を見 出している。合金溶解るつぼ兼噴射ノズルは石英ガラス 製であるが、石英ガラスと溶融 Au は全く反応せず、ノズ ルは繰り返し使用可能であることも確認している。また, 全率型固溶体を形成する Au-Ag 合金でも回転水中紡糸 実験を行ったが、球形凝固物が得られただけであり、連 続細線の製作は見込めなかった。

回転水中紡糸法で連続細線を得るには、溶融ジェット に硬い酸化被膜を形成させ、回転水層中でのジェットの 分断を阻止する必要があり、酸化被膜形成性を促進させ るにはBeなどの希土類元素の微量添加が効果的であると

※ 電子制御工学科研究生(現在,豊橋技術科学大学学生)

の指摘がある<sup>1)</sup>。本研究では、Auの回転水中紡糸性を向 上させ得る添加元素を探るが、入手が容易で融点が石英 ガラスの軟化温度より低いSnを選択し、よりピュアなAu 合金細線を得るために、添加元素量と回転水中紡糸性の 関係を明らかにすることを目的とする。

#### 2. 実験装置および実験方法

純 Au (純度 99.99wt%) に添加する元素として純度 99.9wt%Sn を選定した。所定の組成比 (Sn 比を 80wt%, 20wt%, 15wt%, 10wt%, 3wt%, 1wt%および 0.6wt%,) になるようにそれぞれの金属を電子天秤で秤量し, 石英 ガラス製るつぼ (内径 9mm)を用いて大気雰囲気中で高 周波誘導加熱,溶解して合金化した。石英ガラスとの反 応層を除去し, 3g 程度に切断して回転水中紡糸噴射試料 とした。また,添加元素量が 0.01g以下の場合は,石英ガ ラス製るつぼ兼噴射ノズルに Au および添加元素を装填 し, 高周波誘導電流により加熱・溶解・撹拌して合金化 し, 直ちに Ar ガス圧で静止水中, もしくは回転水層中に 噴射することとした。添加 Sn 量が 1at% (約 0.6wt%) 程 度の場合は, 合金化されているかの判断として,得られ た凝固物が純 Au と同様の球状粒子でないときは合金化 されて噴射されているものと判断した。 Fig. 1 に回転液中紡糸装置の概略を示す。回転ドラム (内径 600mm,幅 60mm)を回転させることで,遠心力 によりドラムの内側に水層(約 20mm)を形成した。石英 ガラス管を加熱成形して製作されたノズルに試料合金を 入れ,酸化防止のために、ノズル内の空気を Ar ガスによ り十分置換した後,高周波誘導加熱装置により試料合金 を加熱,溶解し、Ar ガスの圧力により、回転液層中に噴 射させ,溶融合金を急冷凝固させることにより合金細線 を製作する。また、合金の液相線温度が低い場合には、 冷却液体にエタノールを用いた。

連続細線が得られるかどうかは、回転液層速度と溶融 合金ジェット速度の大小関係が大きく影響する。溶融ジ ェット速度が回転液層速度より速ければ、溶融ジェット に対してドラム内壁に到達した部分から圧縮力が伝播し てジェットは屈曲し、材料がもろければ屈曲部分で折損 してしまう。また、ドラム内壁に到達するまでに、ジェ ット円周面に作用する回転液層の粘性抵抗により折損し てしまう場合も考えられる。一方、ジェット速度が遅け れば、ジェットが冷却液体に引張られて破断する。その ため、ジェット速度を決定する噴射圧力とドラム回転速 度は特に重要な紡糸パラメータになる。ジェット速度は 合金密度の平方根に逆比例するので<sup>2)</sup>、密度の大きいAu 合金では噴射圧力を高めに設定する必要がある。しかし Ar ガスボンベの圧力設定の上限界があるから、ジェット 速度にマッチするドラム回転速度を低く設定したいが、



Fig. 1 Schematic diagram of In-Rotating-Water-Spinning apparatus.

低すぎると、遠心力が小さくなってしまい、水平軸まわ りに回転する本装置の場合、安定した冷却液層が形成さ れないといった問題がある。

紡糸実験は Table 1 に条件で行い,得られた凝固物の外
 観,断面を走査型電子顕微鏡(SEM: Scanning Electron Microscope)で観察した。

 Table 1
 Experimental conditions for In-Rotating-Water 

 Spinning method.

| Nozzle Diagram, <i>dn</i> [µm]                                 | 150 ~ 170           |
|----------------------------------------------------------------|---------------------|
| Velocity of Rotating liquid layer , ND<br>[s <sup>-1</sup> ]   | 3.17 ~ 4.83         |
| Ejection Pressure, Pn [MPa]                                    | 0.30 ~ 0.45         |
| Temperature of Coolant, $Tf$ [°C]                              | 9~20                |
| Coolant                                                        | $H_2O$ , $C_2H_5OH$ |
| Distance between nozzle tip and liquid surface : <i>l</i> [mm] | 14~23               |
| Incidence angle, $\phi_0$ : [rad]                              | 0.58 ~ 0.90         |

#### 3. 実験結果及び考察

#### 3. 1 Au-80wt%Sn 合金の紡糸性

Au-Sn 二元合金の平衡状態図を Fig. 2 に示す。 Au-80wt%Sn 合金の液相線温度は、図の波線からおよそ



Fig. 2 Equilibrium phase diagram of Au - Sn alloy system.

260℃である。Sn-Pb 共晶合金では、水中紡糸に比べて、 エタノール中紡糸の結果、細線表面の金属光沢が良く、 細線断面形状の円形度も高かったので、エタノールの発 火点(363℃)以下であることから、冷却液体にエタノー ルを用いた場合でも紡糸実験を行った。

噴射ノズル径を 130µm, 噴射圧力を 0.40MPa, ドラム 回転速度を 3.67s<sup>-1</sup>, 液相線温度が 260℃であることから噴 射温度を 300℃とした。噴射ノズルを Fig. 3 に示すよう に、回転水層面に近づけて噴射した結果, 4m の長さの細 線が得られた。ドラム内周長さが約 1.8m であり, Fig. 3 には噴射直後のジェットしか認められず, ドラムを一周 する前にジェット (固化したワイヤ) はドラム内壁に到 達していることがわかる。固化したワイヤは遠心力によ りドラム内壁に密着するため, ドラム内周長さ以上の細 線が得られたことは, 無限に長い連続細線が得られる紡 糸条件であることを示すことになる。長さの点で,約 1.8m は最適紡糸条件であるかどうかの判断になる。得られた 細線の外観は Fig. 4 (a) に示すように, ストレートで良 好であった。一方, エタノール中紡糸でも約 2m の連続細 線が得られた。しかし, その表面性状は Fig. 4 (b) に示



Fig. 3 Video image of the molten Au - 80wt%Sn alloy jet flow.



Fig. 4 SEM images of the surface appearances of the obtained Au - 80wt%Sn alloy fibers.

すように,多数のしわが認められ, Sn-Pb 共晶合金とは 異なるものであり,エタノールは Au 合金には適さないか も知れない。

#### 3. 2 Au-(20, 15, 10) wt%Sn 合金の紡糸性

Fig. 2 からわかる通り, Au-20wt%Sn が Au 側の共晶組 成になり, 共晶温度はおよそ 280℃である。この組成より Sn 量が減少するにしたがって液相線温度が著しく上昇し, 15wt%Sn でおよそ 440℃, 10wt%Sn ではおよそ 720℃であ る。噴射ノズル径を 120µm, 噴射圧力を 0.40MPa, ドラ ム回転速度を 3.33s<sup>-1</sup> での紡糸状況並びに細線外観を Fig. 5 に示すが, 水中 (a), エタノール中 (b) ともにジェッ ト軌跡に大きな乱れは認められなかったが, 細線の表面 性状は水中紡糸の方が劣悪((c), (d) との比較より) であった。水中紡糸で最長 12m の連続細線を得たが, エ タノール中紡糸では 100mm 程度の細線しか得られず, エ タノールは冷却液体として有効ではないと判断した。



Fig. 5 Jet flow of Au - 20wt%Sn alloy and the surface of obtained wires.

Au-15wt%Sn 合金について,噴射ノズル径を 170µm, 噴射圧力を 0.35MPa, ドラム回転速度を 4.75s<sup>-1</sup>で紡糸し た結果を Fig. 6 に示す。同図(a)からジェット軌跡の乱 れがなく,(b)からも良好な細線が得られたと思われた が,(c)に示すように断面直径の不均一が目立った。さ らに、断面形状も(d)に示すように著しく扁平したもの であった。なお、Sn 量が 15wt%以下の場合は、噴射温度 が 500℃を越えてエタノールの発火を誘発させる危険が あるため水中紡糸のみとした。

Au-10wt%Sn 合金については, 噴射ノズル径を 150μm, 噴射圧力を 0.40MPa, ドラム回転速度を 3.33s<sup>-1</sup>で紡糸し た結果, 最長 1.2mの連続細線を得た。Fig. 7 に細線の表 面性状と断面形状を示すが, 細線の真直性の悪さと断面



Fig. 6 Molten Au - 15wt%Sn alloy jet flow, the surface appearance of obtained wire and its cross sectional shape.



Fig. 7 The surface appearance and the cross sectional shape of obtained Au - 10wt%Sn alloy wires.

の円形度の不均一が目立った。

#### 3. 3 Au- (5, 3, 1) wt%Sn合金の紡糸性

Au – 5wt%Sn 合金では噴射ノズル径を 160µm, 噴射圧 力を 0.40MPa, ドラム回転速度を 3.33s<sup>-1</sup>の紡糸条件にお いて最長 5.2mの連続細線を得た。細線の外観と断面形状 を Fig. 8 に示す。細線の真直性は良好であるが, 断面形状 は Au – 15wt%Sn 合金 (Fig. 6) 並に扁平している。



Fig. 8 The surface appearance and the cross sectional shape of obtained Au - 5wt%Sn alloy wires.

Au-3wt%Sn 合金および Au-1wt%Sn 合金については, 噴射ノズル径を 170μm, 噴射圧力をそれぞれ 0.35, 0.33MPa, ドラム回転速度をそれぞれ 4.5, 4.83s<sup>-1</sup>の紡糸 条件で紡糸実験を行った。その結果を Fig.9 に示す。(a) と(b)の視野内ではジェットが連続していたが,回収し た細線((c),(d))の長さは数十 mm 程度であった。 ドラム回転速度よりジェット速度(噴射圧力)が低すぎ た結果と考えられる。細線の外観は Au-5wt%Sn 合金の 場合より劣っている((e),(f))が,(g),(h)細 線断面の円形度は向上している。ジェットが数十 mm 程 度で破断した後でも,未凝固部分が表面張力によって円 形断面に回復していったためと考えられる。





(b) (d) (f) (h) : Au - 1wt%Sn alloy

Fig. 9 The jet flow of molten Au - 3wt%Sn and Au - 1wt%Sn alloys, the surface appearance of the obtained wires and their cross sectional shape.

#### 3. 4 Au-0.6wt% (1at%) Sn合金の紡糸性

Au-1wt%Sn 合金で細線が得られたことから, Sn 量を 原子数比で 1%に減じた, Au-0.6wt% (1at%) Sn 合金に ついて,噴射ノズル径を 170µm,噴射圧力を 0.35MPa に 固定し,ドラム回転速度を 3.17~4.83s<sup>-1</sup>の範囲で紡糸実 験を行った。得られた細線の外観を Fig. 10 に示す。いず れの紡糸条件においても細線表面に凹みが認められた。 この合金では,得られた細線の長さは短く, Fig. 11 に示



(a)  $: N_{\rm D} = 3.17 {\rm s}^{-1}$  (b)  $: N_{\rm D} = 3.50 {\rm s}^{-1}$  (c)  $: N_{\rm D} = 3.83 {\rm s}^{-1}$ (d)  $: N_{\rm D} = 4.17 {\rm s}^{-1}$  (e)  $: N_{\rm D} = 4.50 {\rm s}^{-1}$  (f)  $: N_{\rm D} = 4.83 {\rm s}^{-1}$ Fig. 10 SEM views of obtained Au  $- 0.6 {\rm wt}\%$  (1at%) Sn alloy wires.



Fig. 11 The relation between the maximum length of the obtained Au - 0.6wt%Sn alloy wire and the drum velocity.

すように、100mm 程度以下であった。細線の真直性を高 めるために、Fig. 12 に示すように、可能な限りジェット 入射角を小さくしたが、細線長さの向上には結びつかな かった。また、Fig. 13 から推測できるように(図の噴射 ノズル形状が本実験の石英ノズルとことなるが、ジェッ ト速度は図中の式で近似できる<sup>2)</sup>)、0.35MPa の噴射圧力 に対しては、ジェット入射角を小さくしたとは言え、ド ラム回転速度が速すぎた結果である。Fig. 11 からは、ド ラム回転数を下げるか、噴射圧力を高めれば細線長さが 向上することが予測されるので、今後の課題としたい。



Fig. 12 The jet orbit of molten Au – 1at%Sn alloy in rotating water layer.



Fig. 13 The relation between the velocity of the jet ejected from conical nozzle and the ejection pressure.

#### 3. 5 Au-Sn合金の機械的性質

紡糸により得られた Au-Sn 合金細線の靱性を Fig. 14 に示す。Sn 量が 10wt%以下の細線の場合は、(a) に示す ような結び目を作製できる程の良好な靱性を有していた



が,10wt%を越えると非常に脆くなり,曲げると(b)のような破断形態を示した。工業的に利用するためには靱性が必要であり,溶体化処理による靱性の改善が可能か検討したい。

本実験で得られた細線は、機械加工あるいは線引き加 工したような、均一な断面ではなかったが、断面がより 良好な Au-lat% (0.6wt%) Sn 合金細線について、Fig. 15 に示すように、引張試験機のチャックに取り付けやすい ように合金細線を保持(試験開始直前に標点距離間の紙 を切断した)して室温にて引張試験を行ったので、その 結果を Fig. 16 に示す。引張強さは純 Au 並であったが、 伸びは 10%程度以下に著しく低下した。破断部はくさび 形にすべり変形してくびれていることが Fig. 17 からわか った。



Fig. 15 The specimen of tensile test piece for the spun wire.



Fig. 16 The stress-strain diagrams of obtained Au – 0.6wt%Sn alloy fibers.



Fig. 17 SEM views of the tensile fracture surface of the obtained Au - 0.6wt%Sn alloy fiber.

### 4. おわりに

純 Au (99.99wt%程度)を溶解して静止水中に噴射した 場合には,噴射ジェットは水中で粒状に分解し,回転水 中に噴射しても同様の結果になり,連続細線の製作は困 難,むしろ不可能と考えられたことから,不純物物質と して Sn を添加し,その合金の回転水中紡糸性を調べた。 その結果, Au-Sn 合金の広い組成範囲において連続細

線が得られ, 紡糸性の向上に Sn はきわめて効果的な添加 元素であることがわかった。

添加 Sn 量が 10wt%以下では,得られた細線の靱性はき わめて良好であったが,10wt%を越えると靱性は著しく低 下した。

添加 Sn 量が lat%でも連続細線が得られたが,より Au 濃度の高い連続細線を得るために,連続細線化に必要な Sn 量の下限界の調査,より細い連続細線を得るための噴 射ノズル径の下限界の調査が今後の課題である。

最後に、本研究は田中貴金属工業(株)様より純金の 貸与を受けて行ったものである。ここに記して深甚の謝 意を表する。実験に際しては、2011年度卒業研究生 伊 藤直輝君、津田聡太郎君、出口郁巳君並びに仲井祐太君 にご協力をいただいた。ここに記して謝意を表する。

#### 参考文献

1) I. Ohnaka : In-Rotating-Liquid Spinning Process, *Encyclopedia of Materials Science and Engineering*, R. W. Cahn and M. B. Bever (eds.) , Pergamon Press, (1988) , pp. 5874 – 587.

2) 島岡三義: 奈良工業高等専門学校研究紀要, **30** (1994), pp. 73 - 78.