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The unsteady supersonic jet formed by the shock tube with small high-pressure section was used as a simple 

alternative system of pulsed laser ablation.   The dynamic of the supersonic jet impinging upon a flat plate are 

discussed by comparing experimental and calculated results.  The experiment and numerical calculation were 

carried out by schlieren method and by solving the axisymmetric two-dimensional compressible Navier-Stokes 

equations, respectively.  The main parameters are distance between the open end of the shock tube and the flat 

plate, L/D, and the pressure ratio of the shock tube, Ph/Pb. Where, L, D, Ph and Pb are the distance between the 

open end of the shock tube and the flat plate, the diameter of the shock tube, pressure of the high and low section 

of the shock tube, respectively.  Collision between the shock wave reflected at the flat plate and the head of 

supersonic jet takes place.  Computational results well predict the experimental dynamic behavior of the shock 

wave and the supersonic jet.  Marked increase in the static pressure on the flat plate under high Ph/Pb and short 

L/D is observed due to interaction between the shock wave and the unsteady jet flow. 
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Fig.2  Side view of shock tube and flat plate
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Fig.3  Flow field for computation and boundary conditions
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Fig.1 Experimental apparatus
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Fig.4 Typical computational schlieren images and 
schlieren photographs for L/D = 5.0, Ph/Pb= 22.6: 
above, calculation; below, experiment
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Fig.5 Time history of schlieren photographs for 
L/D=5.0, Ph/Pb = 10.7

Fig.6 Wall static pressure variation for L/D=5.0
Ph/Pb = 10.7
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Fig.7 Wall static pressure variation for Ph/Pb =22.6,  
L/D=2.5, 5.0 and 7.5
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Fig.8 Relation between L/D and peak pressure 
of shock wave
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Fig.9 Computational schlieren photographs 
and pressure distribution along axis for 
L/D = 2.5, Ph/Pb= 22.6
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