機械構造用炭素鋼の焼入れ硬さに及ぼす焼入れ条件の影響

島岡 三義・吉田 陽亮*・大畑 直樹**・米 聡***・辻井ありさ****

Effect of Quenching condition on Hardness of Quenched Structural Carbon Steel

Mitsuyoshi SHIMAOKA, Yosuke YOSHIDA*, Naoki OHHATA**, Satoshi YONE*** and Arisa TSUJII****

The hardness of the carbon steel for structural use increases with increase of the content of carbon. It has been cleared that the hardness is also changed by a heat treatment such as quenching, annealing and normalizing. Especially the hardness of the carbon steel increases remarkably by quenching. In this study, on the carbon steels for structural use of S15C, S25C, S35C, S45C and S55C, the detailed relations between the hardness and the quenching conditions have been examined experimentally. The increasing of the hardness of the carbon steel was confirmed only in the case of quenching from the temperature above A_3 transformation temperature. The hardness of carbon steel increased with decreasing the temperature of water coolant used in quenching.

1.はじめに

金属材料は機械的性質やその他の特性を合金化によっ て改善することができるが、合金組成をそのままにして おいて、熱処理によっても諸特性を変化させ、また、改 善できる利点と特徴を有する.

鋼は加熱し、冷やすだけでも組織が変化し、鋼の強度、 硬さなどの機械的性質が変化する.この性質を利用し、 合金組成を変化させることなく、鋼の機械的性質を操作、 制御しようとするのが熱処理の目的である.鋼の熱処理 としては、焼入れ、焼戻し、焼なましおよび焼ならしの 4種類に大別される.焼入れは、強度や耐食性を向上さ せ、焼戻しは強度や靱性の調整に用いられ、焼なましは 内部ひずみの除去や加工性の改善に、そして焼きならし は不均一な結晶粒を均一な組織状態に改善するためなど を目的としている.

鋼に限らず,複数の相が混在する合金系であれば,熱 処理によって,その合金の機械的性質を制御することが できるので,所望の機械的性質を得るためには,熱処理 に関する詳細な情報が必要である.

亜共折鋼(炭素含有量が0.767mass%)の焼入れはA₃ 変態点(炭素含有量によって異なり、炭素含有量の増大 に伴い911℃~727℃に低下する)以上の温度に熱し, オーステナイト組織にした後に急冷すると硬さが著しく 増加する. 焼入れ硬さには、炭素鋼の炭素含有量、鋼材 の形状、焼入れ温度、冷却液温度、冷却速度等が深く影 響すると考えられている. 焼入れ温度の影響については, 一般的にはA3 変態点(y 鉄(オーステナイト)から 冷却していく過程において、 a 鉄 (フェライト) へ固 相変態する温度)より30~50℃高い温度が最適であり、 焼入れ試料が大きい場合は多少高めに設定するのが良い と言われているのみで¹⁾,詳細に調べた文献は見当たら ない.また,臨界区域(焼入れ温度からおよそ550℃の 温度範囲) で高い冷却速度を得るために、水冷の場合の 水温は30℃以下に設定されることが多い²⁾.液体急冷 時の冷却速度は冷却液体のサブクール度(液体の沸点と 実際の液体温度の温度差で、液体温度が沸点からどの程 度低いかを示す尺度)に大きく依存し、サブクール度が 大きい方が急速冷却を達成できる³⁾ことによると思わ れるが、冷却時の冷却水温度が硬さに及ぼす影響を調べ た研究報告も見当たらない. そのため, 所定の硬さを得

* 電子制御工学科学生(現在,専攻科機械制御工学専攻学生) ** 電子制御工学科学生(現在,パナソニックAVCネットワークス社勤務) *** 電子制御工学科学生(現在,長岡技術科学大学機械創造工学課程学生) **** 元専攻科機械制御工学専攻学生 るために必要な適切な焼入れ用冷却水の温度を推定する ことができない状況にある.

そこで本論文では,機械構造用炭素鋼である S15C 材, S25C 材, S35C 材, S45C 材および S55C 材を供試材料 として,焼入れ温度と冷却水温度が焼入れ硬さに及ぼす 影響について調べたので,その結果を報告する.

2. 実験方法

機械構造用炭素鋼である S15C, S25C, S35C, S45C および S55C の丸棒(市販品, 直径約22 mmと約25 mm)を旋盤で黒皮(酸化被膜)を除去し,のこ盤で約 3 mm 厚さにスライスした. 焼入れによって試料は硬く なり,研磨に時間を要すると考えられるので,焼入れ前 に材料研磨機を用いてスライス面を湿式鏡面研磨した. 一部の試料の寸法を Table 1 に示すが,厚さに極端な違 いが出ないようにした.

Table 1 Thickness and diameter of samples.

				unit : mm
Sample	S25C	S35C	S45C	S55C
No.1	3.0	3.7	3.7	3.6
No.2	3.2	4.0	3.4	3.8
No.3	3.4	3.6	3.4	3.5
No.4	3.5	3.3	4.0	3.4
No.5	3.5	4.0	4.1	3.6
No.6	3.7	4.2	3.9	3.5
Average	3.4	3.8	3.8	3.6
Diameter	25.0	25.0	25.0	22.0

試料をコイン状にしたのは、試料全体が均一に冷却さ れるようにするためである. コインのスライス面の円周 方向と半径方向の温度分布は発生しないと考えられる し、コインの厚さが薄いほど厚さ方向の温度分布も無視 できるようになる. 概略ながら、後述の Fig. 5 に示した、 水平白金細線浸漬時の、最も冷却が遅い、水温 Tw = 60℃の場合について、527℃での S40C と白金の熱物性 値を用い⁴⁾、927 ~ 127℃まで冷却する間の平均熱伝達 率*h*を求めてみると, *h* = 121 W·m⁻²·K⁻¹ 程度になる. 試料の撹拌急冷時の熱伝達率もこの程度と仮定し、試料 の熱伝導率を λ , 試料の厚さ*t* (= 4 mm)を代表寸法 とする Biot 数(物体表面の熱伝達の相対的な大きさを 表す無次元数)は *Bi* = *h*·*t* / λ = 0.00132 になり、厚さ 方向の温度分布はほとんど考えなくても良い⁵⁾ ことが わかる.

試料の加熱に Fig.1 に示す電気炉を用いた. 電気炉内の温度は全面パネルにデジタル表示されるが, N型(ナ

イクロシルーナイシル) 熱電対でも測定した. この電気 炉は非常に小型(炉内寸法は,幅85×高さ60×奥行き 120 mm)で On – Off で温度制御されているため,過熱 保持温度に設定しても、ある程度の幅で炉内温度が変動 した. N型熱電対の出力をパソコンに取り込んで記録し、 その温度変動を調べた結果、設定温度710~910℃に対 して、およそ200secの周期で変動しつつも±5℃程度 以内に制御できており、試料の過熱保持に支障のない炉 であることが確認できた.

Fig. 1 Photograph of the electric furnace.

試料を焼入れ温度 (A_3 変態点からの温度差, $\Delta T_Q = T_Q - T_3 = -30 \sim 150$ ℃, T_Q ;加熱温度, $T_{A3} = A_3$ 変態点温度) に大気雰囲気中で加熱した後,約2ℓの水 (水温, $T_W = 3 \sim 95$ ℃, K型熱電対で測定した) を入れたビーカーに浸漬攪拌急冷して焼入れを行った.

焼入れした試料の表面を湿式鏡面研磨し,試験荷重を 9.807N,荷重保持時間を30secとして,研磨面の数カ所 においてマイクロビッカース硬さを測定した.

3.実験結果及び考察

3.1 焼入れ前の硬さ

焼入れ前(購入時のまま)の各炭素鋼の硬さをFig.2 に示す.炭素含有量の増大とともに硬さが増大すること が知られているが⁶⁾,炭素含有量の増大とともに硬いセ メンタイト(Fe₃C)が増大することに起因する.本実 験においても炭素含有量が多い方が硬くなること,また,

Fig. 2 Micro-Vickers hardness of the samples.

炭素含有量が 0.6mass% 以上では硬さの増大の割合が小 さくなっていくことも確認できた.

3.2 加熱保持時間の決定

焼入れにあたっては、試料全体が均一な温度になり、 組織が全てオーステナイトに変化する必要がある。炭素 が完全に固溶するまでには、ある程度の時間その温度に 保持する必要があるので、以下に示す実験を行って過熱 保持時間を決定した。結果を Fig.3 に示す。

試料寸法が小さくて最も焼入れ効果が現れる S55C(直径 22 mm,厚さ 3.6 mm 程度)を試料とし,冷却水温度を約 10℃, $T_Q = 800$ ℃に設定して, T_Q に到達後に試料を炉に挿入し,過熱保持時間を 60sec, 180sec, 300sec および 600sec に変更して焼入れを行った後,硬さ測定を行った.その結果を Fig. 3(a) に示す.過熱保持時間が 60sec から 300sec の間においては,過熱保持時間が長くなるにつれて焼入れ硬さは上昇した.しかし,保持時間が 300sec から 600sec に延長しても焼入れ硬さの上昇はほとんど認められなかった.したがって,S55Cの場合, 300sec 以上熱すれば炭素が全て固溶してオーステナイト組織に変態したものと考え,過熱保持時間は 300sec で十分であろうと考えた.

Fig. 3 The relation between the hardness and the holding time.

また、機械構造用炭素鋼は質量効果が大きく、質量が 大きくなると焼きの入り方が大きく変わるので、直径 や厚さの異なる S45C, S35C, S25C (直径 25 mm, 厚 さ3~4 mm) でも同様の結果が得られるかどうかを, S45C で確認の実験を行った. その結果を Fig. 3(b) に 示す.加熱温度を T_Q = 825℃,冷却水温度を 10℃ に設 定し, S45C は S55C より直径が大きいため, オーステ ナイト組織に変態するのに必要な過熱保持時間はS55C より短くなることはないと考えた. S45C で過熱保持時 間を 300sec と 600sec で実験を行った結果, 300sec 間保 持した場合と 600sec 間保持した場合で硬さに著しい変 化がなく, 300sec で十分に焼きが入ると判断した. なお, 焼きが入るというのはマルテンサイト組織になることで あり、焼入れ硬化とは別であるが、本研究では同義とす る. また, 不当に長時間高温に保持するとオーステナイ ト粒の成長が心配される⁷⁾ので、以後の実験では過熱 保持時間を 300sec に設定することとした.

3.3 焼入れ硬さに及ぼす冷却水温度の影響

焼入れにおいて、冷却剤とその温度はきわめて重要で ある. 数百℃以上の高温の鋼を数十℃程度の冷却水に浸 漬させると, 初めは鋼の持つ莫大な熱量が水に伝達され て水蒸気が発生し、鋼は蒸気膜に覆われて冷却される. 次第に蒸気発生の程度が薄れ、蒸気膜の崩壊と共に蒸気 泡の活発な発生による核沸騰により冷却され、その後は 水との直接接触となり、対流によって冷却される、高 温物体の液体急冷時の伝熱挙動を明らかにするために, Fig. 4 に示すような実験装置を構築し、高温に加熱した 水平白金細線(直径 150 µm, 長さ約 50 mm)を静止 水中に浸漬(水中突入速度 0.5 m·s⁻¹)した場合の白金 細線の伝熱過程を調べた、浸漬急冷過程での白金細線の 温度変化を Fig. 5 に示す³⁾.水温 Tw が高くなると白 金細線の冷却速度が著しく低下することがわかる.また, 白金細線の冷却は指数関数的に温度が低下するニュート ン冷却のような単純なものでもないことがわかる.

鋼の焼入れにおいては、オーステナイト領域から*A*1 変態点(727℃)までは急冷されることが必要で、マル テンサイトへの変態付近では組織が均一に変態する必要 があることから、逆に急冷は望ましくない、マルテンサ イトへの変態温度は、冷却速度ではなく、炭素含有量に 依存し、S15Cでおよそ495℃(768 K)、S55Cでおよそ 351℃(624 K)であり⁸⁾、Fig. 5 から水温が 30℃以下の 場合には望ましくない冷却剤ということになる。

焼入れ後の硬さと冷却水温度の関係を調べた結果を Fig. 6 と Fig.7 に示す. 焼入れ温度を $\Delta T_Q = 40 \sim 50$ ℃ に設定し、300sec の過熱保持を行い、水中浸漬撹拌急

Fig. 4 Schematic diagram of experimental apparatus for dipping of high temperature horizontal platinum filament.

Fig. 5 Cooling curves of the platinum filament.

冷を行っている.数回測定したマイクロビッカース硬さ の平均値をプロットしている.Fig.6より,冷却水温度 が低いほどに硬くなっていく傾向が認められ,その傾向 はS25CとS35Cで顕著であり,いずれの鋼材においても, 冷却水温度が60~70℃を超えると焼入れの効果が著し く低下することがわかった.また,20℃以下では焼入れ 硬さの著しい増大は認められなかった.これらのことか ら,以後の焼入れ実験では冷却水温度を20℃より低い, 10℃として撹拌急冷することとした.なお,S15Cの場 合は,焼入れを行っても硬さの増大はほとんど認められ

Fig. 6 Effect of the temperature of water coolant on the quench hardness for the structural carbon steels.

Fig. 7 Effect of the coolant on the quench hardness for the structural carbon steels.

なかった. これは Fe₃C を形成する炭素量が少ないため と考えられ, S15C は焼入れの効果がほとんど現れない 材料であることが確認できた.

また、水以外でも焼入れを行ったが、ひまし油では硬 さの増大が認められなかった。S45C については液体窒 素中への浸漬を行ったが、冷却の遅さが目視でき、硬さ は増大しなかった。大気圧下では液体窒素は沸騰してお り、試料が窒素で覆われて冷却を阻害している。冷却剤 の温度が-196℃の超低温であっても冷却速度には直接 影響しないことが確認できた。

3.4 焼入れ硬さに及ぼす過熱温度の影響

鉄-炭素系平衡状態図の低炭素側の一部分を Fig. 8 に 示す. G-S ラインが A3 変態点である. S15C ~ S55C までの A_3 変態温度 T_Q は図中に示したように、 $855 \sim 760 \mathbb{C}$ であり、すでに前述しているが、この温度より $50 \mathbb{C}$ 程度上(H' – H' ライン)に過熱保持した後に急冷 するのがよいと言われている.

硬さと焼入れ温度の関係を調べた結果を Fig. 9 に示 す. 冷却水温度は $T_w = 10$ である. いずれの鋼種にお いても $\Delta T_Q = -50$ であった, A_1 変態点より低い 温度に過熱して急冷しても硬さが増大せず, 焼入れは オーステナイト組織から急冷する必要があることが確認 できた.

 $\Delta T_Q = 0$ ℃, すなわち, A_3 変態点温度から急冷した 場合では, S55Cの高炭素鋼において若干の硬さの増大 が認められた. ΔT_Q が30~50℃の範囲で硬さの著し い増大が認められた. しかし, $\Delta T_Q > 50℃では硬さ$

Fig. 8 A part of the equilibrium phase diagram of Fe - C binary alloy system.

Fig. 9 Effect of the superheat above A₃ transformation temperature on the quench hardness for structural carbon steels.

の増大の度合いが小さくなって、必要以上の過熱は焼入 れ硬さの増大にほとんど期待できないことがわかった.

一方,S25Cでは $\Delta T_Q > 30$ ℃で硬さが減少する傾向 があり,他の鋼種とは異なった傾向を示した.試料は同 じ棒材から切り出しているし,試料の加熱,浸漬撹拌急 冷の仕方に極端な違いもなく, $\Delta T_Q > 100$ ℃では別試 料で焼入れを行って,同程度の硬さが得られているので, このような結果になった原因は不明である。今後の検討 課題としたい。

以上の実験から,機械構造用炭素鋼は焼入れ硬さが著 しく増大することがわかった.そこで,焼入れ前と焼入 れ後で硬さがどの程度増大するかを Fig. 10 のように比 較してみた. S25C ~ S55C においては,焼入れ硬さは 市販材の硬さのおよそ3.5 倍に増大することがわかった. 3.5 倍への増大率が鋼種によらないということは非常に 興味深い結果である.

Fig. 10 The ratio of quench hardness after and before quenching.

4.おわりに

S15C, S25C, S35C, S45C および S55C の機械構造用 炭素鋼の, 直径 22 ~ 25 mm, 厚さ 3 ~ 4 mm 程度のコ イン状試料について,水中撹拌急冷による焼入れ硬さ(マ イクロビッカース硬さ)におよぼす冷却水温度と加熱温 度の影響を調べた結果,以下のことが明らかとなった.

(1) 市販品においては, 炭素含有量の多い, すなわち, 硬い Fe₃C 固溶量の多い鋼種ほど硬さが増大することが わかり, 炭素含有量が 0.55mass% 以上になると硬さの 増大の度合いが低下し、ある値に漸近することがわかった.

(2)本実験で使用した試料サイズでは、試料の組織を オーステナイトに変態させるのに必要な、A3 変態点よ り過熱して保持する時間は 300sec 程度で十分であるこ とがわかった.

(3) A₃ 変態点より 50℃過熱して水中撹拌急冷した場 合,水温が高くなるほど焼入れ硬さが低下し,水温が 60℃以上では,市販品の硬さより焼入れ硬さがほとんど 増大しないことがわかった.ただし,炭素含有量が最も 少ない S15C 材では,水温が低くても硬さはほとんど増 大しなかった.また,比較のために,25℃のひまし油中 へ撹拌急冷して硬さを調べた結果,水温が 80℃の時の 硬さにしかならず,液体窒素中に浸漬しても同程度の硬 さであり,冷却剤として水の良さが確認できた.

(4) A_3 変態点よりの過熱度を変化させて水中浸漬撹 拌して、 A_3 変態点からの過熱度と焼入れ硬さの関係を 調べた結果、 A_3 変態点より過熱しないと硬さは増大し ないこと、また、過熱度を100℃以上にしても硬さの増 大はほとんど期待できないこと、すなわち、最適過熱度 は A_3 変態点より 30 ~ 50℃程度であることが確認でき た.また、最高焼入れ硬さは、硬さが増大しない S15C を除く鋼種において、市販品の 3.5 倍程度になることが わかった.なお、S25C については、 A_3 変態点からの過 熱度が 50℃を超えると硬さが減少する傾向が認められ た.

最後に、本実験では元本校専攻科機械制御工学専攻学 生(現在,奈良先端科学技術大学院大学大学院情報科学 研究科学生)の西田直貴君および野口卓磨君にご協力を いただいた.ここに記して謝意を表する.

参考文献

- 1) たとえば,西川精一:新版金属工学入門,アグネ 技術センター (2001), p. 256.
- 日本鉄鋼協会編:鋼の熱処理 基礎と作業標準, 丸善(1957), pp. 286 - 289.
- 大中逸雄, 島岡三義, 氈受彰, 大友邦久:日本機 械学会論文集 B 編, 54(1988), pp. 704 - 708.
- 4) 日本機械学会編: *伝熱工学資料改訂第4版*, 丸善(1986), pp. 315- 317.
- 5) 庄司正弘:*伝熱工学*,東京大学出版会 (1995), p. 66.
- たとえば、日本金属学会編:金属データブック(改 訂3版)、丸善(1993)、p. 127.
- 7) 日本金属学会編:金属便覧(改訂5版),丸善(1993),
 p. 540.
- 8) 西川精一:新版金属工学入門, アグネ技術センター (2001), p. 254 - 255.