Cutting Performance of Turning Insert with Three-arcs-shaped Finishing Edge

Wada Tadahiro , Hiro Kazuki and Nakanishi Jun*

Applied Mechanics and Materials Vols. 110-116 (2012) pp 1630-1636

The machined surface is an important index of the quality and functional performance of a machined component [1]. In turning operations, ideal surface roughness is the best possible finish that may be obtained for a given tool shape and feed rate and can only be approached if built-up edge, chatter, inaccuracies in the machine-tool movement, etc., are eliminated [2]. Surface roughness is dependent on both the tool geometry and the feed rate "S." For example, in turning by an offset tool with the side cutting edge angle 0 degrees and the corner radius "r," the theory value of surface roughness (the maximum height roughness "Rz") is similar in $S^2/(8r)$ in the case of the feed rate "S" being lower than "2r." Thus, using a larger corner radius or a lower feed rate is effective for obtaining a good machined surface. However, turning at lower feed rates decreases productivity and it has a negative influence on the turning operation because of continuous chipping. On the other hand, turning at a larger corner radius increases both the productivity and good machined surface because of the higher feed turning.

Incidentally, in the turning of a shaft with a step of specified corner "R," it is important whether the corner radius of the turning insert is the same as the specified corner "R" or lower than it. A turning tool with a large corner radius cannot adapt to cutting a shaft with a step of the specified corner "R." Therefore, a finishing blade is formed at the point of the intersection between the corner radius and the straight cutting edge. This finishing blade is called a wiper edge [3, 4].

In this study, the surface roughness, cutting force, and tool wear were experimentally investigated in order to clarify the cutting performance of the turning insert with a three-arcs-shaped finishing edge. Work piece material ASTM D2 (JIS SKD11) was turned with two types of turning inserts that had different radii of the arc-shaped finishing edge.

The main results obtained are as follows.

- The machined surface of the insert with a threearcs-shaped finishing edge was better than that of the normal insert.
- (2) The wear progress of the insert with an arc-shaped finishing edge was slightly slower than that of the normal insert.
- (3) The cutting force of the insert with an arc-shaped finishing edge was almost the same as that of the normal insert.

ACKNOWLEDGMENT

We are very grateful to Tungaloy Corporation for their cooperation in the molding of the turning inserts.

REFERENCES

- Jhy-Cherng Tsai, Ming-Yi Tsai, "Experimental Analysis of Surface Roughness for Turning Process," Proc. of the Int. Conf. on Precision Engineering (ICPE'97), Taipei, Nov. 1997, pp.287-290.
- [2] Geoffrey Boothroyd, Fundamentals of Metal Machining and Machine Tools, Scripta Book Company 1975, pp.134.
- [3] Catalogue of Tungaloy Corporation.
- [4] Catalogue of Mitsubishi Materials Corporation.