島岡 三義・辻井ありさ*

Micro-Vickers Hardness of Some Copper Alloys

Mitsuyoshi SHIMAOKA and Arisa TSUJII*

The effect of the composition of the copper alloys on the Micro-Vickers hardness have been examined. Cu-Be alloy, Cu-Sn alloy and Co-Cu-Be alloy have been chosen as the sample alloys. The relation between the Brinell hardness of Cu-Sn alloy in the range from 0 to 25wt% in Sn concentration and the Micro-Vickers hardness has been obtained. The hardness of this alloy was described as a curve of second degree for Sn concentration. The Micro-Vickers hardness of Bi-Sn alloy in the range from 8 to 90wt% in Sn concentration increased a little with increasing Sn concentration. The Micro-Vickers hardness of Cu-Sat% in Be concentration increased linearly with increasing Be concentration. The Micro-Vickers hardness of Co-Cu-Sat%Be alloy in the wide range of Cu concentration decreased linearly with increasing Cu concentration.

1.はじめに

物性値測定の中で,硬さ測定,特にマイクロビッカー ス硬さの測定はは比較的容易なものであり,硬さ値は引 張強さなど,他の機械的性質の大雑把な予測に用いられ ることが多い。また,硬さは物理的,機械的性質が複合 した性質を持つものであり,材料固有の物性値でありな がら,いくつか考案されている硬さ測定法によってその 硬さ値が異なるという,他の物性値とは異なる性質をも つ。このことは,硬さの定義が硬さ測定法に依存してい るものであり,普遍的な定義がなされていないことを示 すものである。

現存する合金の数は非常に多く,硬さ測定がなされて いない合金も多い。二元合金に限っても、その平衡状態 図が合金毎に違うことから推測できることであるが、合 金の物性は組成比がわかれば容易に推定できるというも のではない。硬さに限らず、機械的・物理的・電気的性 質等を合金の組成比で推定できれば、必要な機能を有す る合金や機器の設計において極めて有益になると考えら れる。なお、過去の研究で、組成比と硬さの間に直線関 係が見出された合金系もある⁽¹⁾ので、硬さと組成比の関 係を調べることの意義は十分にあると考える。

そこで本研究では、試料合金作成が容易な非鉄金属材料 * 元本校専攻科機械制御工学専攻学生 の中で,いくつかの銅合金のマイクロビッカース硬さを測 定し,その硬さを合金の組成比で整理することを試みた。

2.実験装置および実験方法

試料合金として Cu - Sn 合金, Cu - Be 合金およびCo - Cu - Be 合金を用いた。

Cu - Sn 合金は、Cu - 7wt%Sn、Cu - 11wt%Sn、Cu - 14wt%Sn、Cu - 17wt%Sn、Cu - 22wt%Sn、Cu - 25wt%Sn、Cu - 25wt%Sn、(wt% は重量%を表わす)の組成比になるように、ともに純度99.9%の電気銅およびSnを電子天秤で秤量し、Ar ガス雰囲気中で加熱・溶解して作成した。溶解時は各金属がよく混合するように石英ガラス保護管(外形約3.5mm、肉厚約0.4mm)で攪拌した後、冷却・凝固させて試料合金を作成した。

Cu - Be 合金においては、市販されている Cu - Be
合金の中で最も多く Be を含んでいる Cu - 22.7at%Be
(Cu - 4wt%Be) 合金に、純度 99.9%の電気銅を添加していくことにより、Be の量を相対的に減らし、
Cu - 1at%Be, Cu - 2at%Be, Cu - 4at%Be, Cu - 10at%Be, Cu - 22.7at%Be(at% は原子数比(百分率)である)の5種類の合金を作成した。

Co - Cu - Be 合金の作成においては、それぞれ純度が 99.9% の電気銅、電解コバルトおよびベリリウムを用

いた。所定の原子数比になるように秤量してアルミナタ ンマン管に詰め、アルゴン雰囲気中で高周波溶解し、内 径約7mmの石英管で吸い上げて円柱状試料合金を作成 した。試料合金の組成比は $|Co_{(100-x)}Cu_x|_{95}Be_5$ のように、 下付数字で表すが、x = 5, 10, 20, 25, 30, 40, 50, 60, 70, 80, 90 および 97at% であり、Be は 5 at% 固定 とした。以後、 $(Co_{95}Cu_5)_{95}Be_5$ 合金を Co-5Cu-5at%Be 合 金のように簡略して記すこととする。

硬さ測定は室温にて行い,島津製作所製マイクロビッ カース硬度計,HMV-1を使用し,押し込み力を9.807N, 試験時間(押込み時間)を15秒とした。

また, 試料合金をポリエステル樹脂に埋め込み, 湿式 鏡面研磨・乾燥後, 無エッチングで試料合金の凝固組 織を走査型電子顕微鏡 (Scanning Electron Microscope : SEM)で観察(反射電子像)した。

3. 測定結果とその考察

3.1 Cu-Sn 合金

純銅(電気銅や無酸素銅)の硬さは文献によって差がある。 無酸素銅では $H_V = 33^{\circ}$, その他、純銅の詳細は不明である が、 $H_V = 110^{\circ3}$, $H_V = 100^{\circ3}$, また、ブリネル硬さ(後述す るように、ビッカース硬さと数値的に大差はないと思わ れる)であるが、 $H_B = 5^{(4)}$, $H_B = 23^{(5)}$, $H_B = 30 \sim 35^{(6)}$, などである。本研究では、合金作成に使用した電気銅の 実測値 ($H_V = 94 \sim 97$) で整理することとした。

Cu - Sn 合金のマイクロビッカース硬さ H_V を調べた 結果を図1に示す。硬さにおよぼす組成依存性が明確に 認められ、7~25wt%以下の低 Sn 合金においては、Sn 量の増加とともに硬さは増大することがわかった。また、 重量比、原子数比のいずれにおいても、硬さは図1中に 示すような放物線で整理することができた。図中のxと y はそれぞれ合金の at% および wt% 単位での Sn 量で ある。

なお、Snの硬さは $H_V = 10$ 程度であり、Cuより軟ら かい金属とで合金化すると Cu 以上の硬さになる。Cu – Sn 二元平衡状態図によれば、およそ 8at%Sn 以上の 組成では、800℃以下で初晶の Cu と β (Cu₅Sn)(電子化 合物形)の混合組織を呈し、さらに、15 ~ 20at%Sn 付 近では 755℃付近に包晶反応がある(この包晶反はない という説もあるが)(7)などで、8at%Sn 以上の凝固過程 の変化と硬さの増大が符合するようである。硬さの異な る金属で合金を作成すると、その合金の硬さが増大する というのは大変興味深い現象である。純金属の物性値の 単純な足し算では、合金の物性を評価できないのは硬さ に限ったことではないが、このような性質を示すのが金 属の魅力とも言えよう。なお、筆者らは、Sn – Bi 合金 においても、合金化すると Sn および Bi 単体の硬さよ り硬くなることを確認している。

また、文献(4) および(8) をもとに求めた H_V とブ リネル硬さ H_B の関係を図2に示す。軟鋼、非鉄合金で ある Cu – Sn 合金および Cu – Zn 合金ともに良好な直 線関係が得られることがわかった。鉄鋼材料は、ブリネ ル硬さとビッカース硬さの数値はほほ等しいが、Cu – Sn 合金では、硬さの増大と共にビッカース硬さ値がブ リネル硬さ値より大きくなることもわかった。なお、非 鉄合金と軟鋼では直線の勾配がわずかに異なるという結 果も得られた。硬さ試験法によって硬さ値が異なること から、鉄鋼材料に関しては、硬さ換算表が整備されてい る⁽⁹⁾が、図2からわかるように、鉄鋼材料の換算表は 非鉄材料に適用できないので、非鉄材料に関する硬さ換 算表の整備も重要であることを再認識させられた。

Cu - Sn 合金の凝固組織の SEM 像(反射電子像)を 図3に示す。反射電子像では原子量が小さい元素ほど、

Fig. 1 Micro-Vickers hardness of Cu-Sn alloy.

Fig. 2 The relation between the Micro-Vickers hardness and the Brinell hardness of Cu-Sn alloy.

Fig. 3 SEM views of the solidification structures of Cu-Sn alloys.

相対的に暗く映るので、図3において暗部がCuリッチ 相を示し、明部がSnリッチ相を示すことになる。Cu – Sn 合金では、Cuリッチ相が先行的に樹枝状に成長して いることがわかる。また、図1に示したように、Cu – 14wt%Sn 合金の硬さ値のばらつきが特に大きかったが、 これは、硬さ測定時の圧痕の対角線の長さは80~150 μ m 程度であり、圧痕は複数のデンドライトの樹枝にま たがるので、図3に示すような凝固組織の偏りとは無関 係であると考えられる。

3.2 Cu-Be 合金

Cu - Be 合金のマイクロビッカース硬さ測定の結果 を図4に、凝固組織の代表的なものを図5に示す. Be の添加量の増大にともない、硬さが直線的に増大してい ることがわかった. Be 量が22.7at%以下の範囲ではあ るが、図中の直線回帰式で近似できた。Cu - Sn 合金 では、原子数比と質量比のいずれの組成比であっても、 硬さは組成比の二次関数で整理できたが、Cu - Be 合 金では直線で整理できたので、中間組成の硬さを予測が 用意であり、予測精度も高まると言える。

Fig. 4 Micro-Vickers hardness of Cu-Be alloy.

22.7at%Beの合金ではHV = 200以上であり,市販の SS400相当の軟鋼の硬さ以上である。また, Cu - Be 合

Fig. 5 SEM views of the microstructures of Cu-Be alloy.

金は時効硬化型合金であり、20at%Be 合金で、800℃で 焼入れ後、350℃で時効(時効時間1時間)した場合の 硬さは HV = 400 以上になる⁽³⁾。

図 5 は Cu - 10at%Be 合金と Cu - 22.7at%Be 合金の 徐冷凝固組織である。図 5(a) および (b) の Cu - 10at%Be 合金では、初晶の Cu リッチ相のデンドライトの間隙に Be リッチ相が存在することがわかるが、図 5(c) の Cu -22.7at%Be 合金においては、Cu リッチ相は非常に細かな 針状になっている。22.7at5Be の組成では、包晶反応によ り 870℃で β 相が析出するが⁽¹⁰⁾,このような反応のために、 凝固組織の様相が極端に違っているものと考えられる。

3.3 Co-Cu-Be 合金

Co-Cu合金は、Cu-richな急冷簿帯で巨大磁気抵抗 効果が得られ、さらに適当な熱処理を施すことにより、 Coを過飽和に固溶したCuマトリクスからナノスケー ルの微細なCo-rich粒を析出させることで、さらに磁気 抵抗比を増大させることができる⁽¹¹⁾。また、図6の平衡 状態図⁽¹²⁾に示すように、広範囲の組成にわたって非常 に平坦な液相線を有しており、図中に示した準安定相分 離線以下に過冷されると二相分離組織になることも明ら かになっている⁽¹³⁾。筆者らは、回転水中紡糸法の急冷 プロセスを利用した過冷によって二相分離組織の創出を 試み、あわせて連続細線の製作を試みたが、Co-Cu二 元合金では連続細線が得られなかったため、Beを5at% 添加することで連続細線化を達成した⁽¹⁴⁾。急冷による過

Fig. 6 Equilibrium phase diagram of the Co-Cu alloy system.

5

(a) As-cast

(b) As-spun

Fig. 7 SEM view of the rapidly solidified structure of Co-60Cu-5at%Be alloy wire produced by In-Rotating-Water-Spinning method.

冷で二相分離が達成できたのは50~70at%Cuの組成の 合金だけであり,二相に分離した急冷凝固細線の特徴的 な凝固組織を図7に示す。図7(a)は合金作成時の徐冷材 であり,デンドライト凝固組織である。(b)は紡糸によっ て得られた急冷凝固細線の長手方向断面組織であり,徐 冷材で存在したデンドライト組織は認められず,マトリ クスは粒状組織になっていて,暗部の島状の部分と周囲 とのコントラストが明瞭であり,二相に分離しているこ とが一目瞭然である。

Co - xCu - 5at%Be 合金のマイクロビッカース硬さ 測定の結果を図8に示す。Co は超硬合金や超耐熱合金 の構成元素としてきわめて重要な元素である。Cu 量が 多い合金ほど硬さが減少していく傾向が認められ、Cu がCo - Cu 系合金を軟化させる元素であることがわか る。図中に示すように、原子数比での組成比の一次関数 として硬さを整理することができた。

Fig. 8 Micro-Vickers hardness of Co-Cu-Be alloy.

4 おわりに

Cu - Sn 合金, Cu - Be 合金, および Co - Cu - Be 合金においてマイクロビッカース硬さ測定を行い, 硬さの組成依存性について調べた結果, 硬さを以下のような整理式で整理できることがわかった。

- Cu Sn 合金では、合金化するとCu およびSn 単 体の硬さより硬くなる。
- (2) Cu Sn 合金では、Sn 含有量が7~25wt%の合金に ついて、マイクロビッカース硬さ H_V とブリネル硬さ H_B の対応関係を次式のように求めることができた。

 $H_V = 0.8127H_B + 25.427$ · · · (1) この対応関係は、軟鋼の対応関係に比べて比例係数がわ ずかに小さく、Cu - Zn 合金とほぼ同じであり、軟鋼の 硬さ換算表を非鉄合金に流用できないことが確認できた。 (3) Cu - Sn 合金のマイクロビッカース硬さと組成比の 関係を次式のような二次関数で評価することができた。

 $H_{\rm V} = 1.590 x^2 - 7.010 x + 90.627$ ・・・(2) (x は Sn 含有量を at% で表した時の数値)

$$H_{\rm V} = 0.606 y^2 - 5.319 y + 91.034$$
 ・・・(3)
(v は Sn 含有量を wt% で表した時の数値)

(4) Cu – Be 合金においては, Be 含有量が lat% ~ 22.7at% の合金について, 硬さと組成比の関係を次の一次関数で 表すことができた。

> $H_{\rm V} = 7.6807 \, x + 36.343$ ・・・(4) (x は Be 含有量を at% で表した時の数値)

$$H_{\rm V} = 43.194 \ y + 40.554 \ \cdot \ \cdot \ (5)$$

(y は Be 含有量を wt% で表した時の数値)

(5) Co - Cu - 5at%Be 合金においては、Cu 含有量が
 10~90at%の合金について、硬さと組成比の関係を次の一次関数で表わすことができた。

文 献

- 島岡三義,田中友基,杉原新一:奈良工業高等専門 学校研究紀要,38(2002), pp.21-27
- (2) 日本金属学会編:金属データブック(改訂3版), 丸善(1993), p. 170.
- (3) 日本金属学会編:金属便覧(改訂5版), 養賢堂(1993), p. 625.
- (4) 日本金属学会編:金属データブック(改訂3版), 丸善(1993), p. 173.

- (5) 日本金属学会編:金属データブック(改訂3版), 丸善(1993), p. 180.
- (6) 日本金属学会編:金属データブック(改訂3版), 丸善(1993), pp. 172-173.
- (7) 日本金属学会編:金属データブック(改訂3版), 丸善(1993), p 530.
- (8) 日本材料学会編:金属材料強度試験便覧,養賢堂(1977), pp. 186-187.
- (9)日本機械学会編:機械工学便覧,A4材料力学基礎 編,日本機械学会(1984), p. 149.
- (10)日本金属学会編:金属データブック(改訂3版), 丸善(1993), p. 496.
- (11) 潟岡教行, 深道和明:まてりあ, 33(1994), pp. 165-174.
- (12) T. Nishikawa and K. Ishida : Binary Alloy Phase Diagram, Ed. by Massalski, ASM, OH USA, (1986), p. 760.
- (13)S. P. Elder, A. Munitz and G. J. Abbaschian : Mater. Sci. Forum, 50(1989), p. 137.
- (14)島岡三義,大中逸雄,山内 勇,前田宗彦:日本金 属学会誌, 61(1997), pp. 1115-1121.