人工衛星の帯電放電現象に関する研究

藤井 治久

Research on Spacecraft Charging in Space Environment

Haruhisa Fujii

Research on spacecraft charging was started about twenty years ago by the author from the view point of the improvement of reliability and the longer mission life of a satellite in space environment. The followings are involved in the research activity:

- (1) Experimental investigation on the charging and discharge characteristics of satellite surface materials by electron-beam irradiation simulating hot plasma in space.
- (2) Analytical simulation of electron-beam induced charge-up phenomenon of insulating materials.
- (3) Development of the on-board surface potential monitor and the measurement of the surface potentials of insulating materials using the monitor in geostationary space environment.
- (4) Development of the mitigation techniques of spacecraft charging.
- (5) Experimental investigation on the interactions of satellites with dense and cold plasma simulating low Earth orbit environment.

1 はじめに

地球軌道を周回している通信衛星、放送衛星、気象衛 星など多くの衛星は、我々の生活に計りしれない恩恵を もたらしている。これらの衛星は宇宙の希薄なプラズマ 環境で長期間正常に機能する責務を担っている。しかし ながら、プラズマ環境の低エネルギー荷電粒子は、いわ ゆる"衛星帯電 (spacecraft charging)"を引き起こし、 衛星上で静電気放電 ESD (electrostatic discharge)を 誘起する可能性がある。ESD は、搭載電子機器・部品、 あるいは電力系の不具合や異常、あるいは、表面材料の 劣化を引き起こす可能性が高いので[1-4]、将来の衛星シ ステムの高信頼性と長寿命化を達成するために、ESD はもちろんのこと、帯電もできる限り抑制しなければな らない。

筆者は三菱電機(株)在籍中、衛星帯電現象の重要性を 認識し、NASDA(宇宙開発事業団、現宇宙航空研究開 発機構JAXA)等と共にこの分野の研究開発に1980年代 半ばから携わってきた。

筆者が行ってきた衛星帯電の研究開発内容は、下記の

とおりである。

- (1)静止軌道等の高高度宇宙環境プラズマ中の電子流を 模擬した電子ビーム照射による衛星表面材料の帯電 放電現象に関する実験的検討
- (2) 絶縁性衛星表面材料の電子ビーム誘起帯電現象の解 析
- (3) 衛星搭載用帯電電位モニタの開発と実宇宙環境での 絶縁材料の帯電計測
- (4) 衛星帯電防止技術の開発
- (5)低地球軌道環境プラズマと衛星との干渉に関する実 験的検討

本論文は、これらの研究内容をレビューしたものであ る。

2 電子ビーム照射による衛星表面材料の帯電放電

宇宙プラズマ荷電粒子の中で、電子が衛星の帯電に大 きな影響を及ぼす[1]。そのため、電子ビーム照射法が、 特に、磁気嵐のような擾乱状態のもとでの衛星表面材料 の帯電・放電現象を研究するために使われてきた[4,5]。 この方法は、衛星表面材料の局所帯電(differential charging)現象のプロセスを理解するために有効である。

図1に示すように、1x10⁶Torr 程度の真空度のチャン バ内で、単一エネルギーの電子ビームを熱制御材料のよ うな絶縁性衛星表面材料に照射した。電子ビームは、エ ネルギー(E)が15~45keV、ビーム電流密度(J_b)が $0.1~16nA/cm^2$ の範囲で制御した。なお、各サンプルの 電子ビーム照射領域は19.6cm²(ϕ 50mm)であった。

電子ビームを照射すると、電流がサンプル中(バルク 電流)とサンプル表面上(表面電流)を流れるが、本実 験では、エレクトロメータ(アドバンテスト TR-84M) によりバルク電流のみを測定し、表面電流は接地された サンプルホルダに逃がした。また、サンプルの表面電位 (V_s)は、非接触表面電位計(TREK 340HV、プローブ 5031S)で測定した[5-7]。

図1 電子ビーム照射実験系

図2は、25µm 厚テフロン FEP (fluorinated ethylene propylene co-polymer) における電子ビーム照射時の表 面電位の電子ビーム電流密度依存性を、電子の照射エネ ルギーをパラメータに示したものである。なお、電子ビ ーム照射時間(T_i)は60分一定とした。図中の黒印は、 照射時間T_i中に放電が発生したときの表面電位である。 表面電位は、電流密度Jbが0.1nA/cm²よりも小さい場 合、 J_b に比例する。一方、 J_b が0.1nA/cm²を超える場合、 E=15keVでは表面電位は次第に飽和する傾向を示した。 しかしながら、E=15keVよりも大きなエネルギーの電 子を照射した場合、表面での放電によって表面電位が制 限される。この放電は、図3に示すように、沿面放電を 伴った貫通破壊であった。このV_s-J_b特性は、他の表 面材料と異なっている。一例として、25µm厚カプトン (PI、poly imide) フィルムの場合を図4に示す。J_bに対 するV。の傾きは約0.5で、放電は照射時間T;中観測され なかった。これらの $V_s - J_b$ 特性から、図5(a)に25 μ m 厚テフロンとマイラ (PET: poly ethylene terephthalate)の表面電位V_sの電子エネルギーE依存性を、ま た、図5(b)には種々の厚さのカプトンの表面電位V。 の電子エネルギー依存性を示す。図5から次のことがわ かる。

- (1) 表面電位は電子エネルギーに依存する。
- (2)低エネルギー領域では、表面電位は電子エネルギー とともに増加する。しかし、高エネルギー領域で は、表面電位は電子エネルギーと共に低下する。つ

(●、▲、■は放電発生電位を示す)

l cm

図3 25µm厚テフロン表面上の放電光の例

図5 表面電位の電子エネルギー依存性

まり、表面電位は、ある電子エネルギーで、最大値 を持つ。

- (3)表面電位の最大値と、そのときの電子エネルギーは、フィルムの厚さと共に大きくなる。
- (4) 同じ電子ビーム照射条件では、厚さが同じならば、 3種の材料の表面電位の大きさは、

FEP>PET>PI の順序となる。

3 電子ビーム照射帯電のシミュレーション解析

前章で述べた電子ビーム照射による絶縁性フィルムの 帯電特性を解析するために、図6に示す2次元軸対称モ デルを使った[7]。その解析のフローチャートを図7に示 す。その解析結果を、図5の中に破線で示している。ほ ぼ実験値と解析値が一致していることがわかる。

また、電子ビーム照射中のテフロンの帯電挙動を Monte Carlo法により検討した[8]。テフロンフィルム内

Electron Beam (E, J_b)

図8 20keVの電子が照射されたときのテフロンフ ィルム内部の電荷分布(入射角度の影響)

部の平均的な電荷分布を計算するために、1eV~35keV 電子の絶縁性フィルム中での散乱の物理モデルを使い、 その電荷分布からPoisson 方程式を用いて、テフロンフ ィルム内の電界強度と電位を照射時間の関数として計算 した。図8は、20keVの電子を照射したときのテフロン 内部の電荷分布を示している。電子の入射角度が変わる と電荷分布も変化することがわかる。

4 宇宙での帯電計測

実際の宇宙環境での荷電粒子による絶縁性表面材料の 帯電電位を計測するため、帯電モニタPOM(Potential Monitor)を開発した。このPOMは、3軸姿勢制御静止 衛星技術試験衛星 V型 (ETS-V: Engineering Test Satellite V) に初めて搭載された[9]。そのPOMのブロ ックダイアグラムを図9に示す。POM はセンサ部 (POM-S) と電子回路部 (POM-E) とから構成されてお り、センサ部には静電プローブ (Monroe社1017S) が 使われている。帯電計測用絶縁性表面材料は、127µm厚 カプトン、127µm厚テフロン、200µm厚石英板の3種類 が使用され、それぞれは図9のプローブケースの上に取 り付けられた。これらのサンプルは裏面が金属蒸着され たもので、導電性接着剤により基板に貼り付けられた。 帯電した表面とプローブヘッドの間の電界強度が、サン プル裏面の \$1mm の非蒸着部を通して測定されるように なっており、POM出力電圧と表面電位の関係が実験的 に校正された。

図9 衛星搭載帯電電位モニタブロック図

ETS-V 搭載 POM によって観測されたデータの一例と して、図10に、1987年10月28日における銀蒸着テフロ ンの帯電電位の変化を示している[9]。POM-S は ETS-V の南面ミッションパネルに取り付けられているので、10 月28日は南面ミッションパネルに日が差し込む状態(日 照状態)になっており、表面から光電子放出が期待でき るが、図10に示されたように、表面電位の負の上昇が 14時UT(Universal Time:世界標準時)と20時UTの 間で観測された。この現象は、ETS-VのLバンドアンテ ナリフレクタや太陽電池パドルの影が14~20時UTの 間に POM-S上に生じるため、光電子放出による帯電抑 制効果がなくなったからであると考えることができる。

図10 ETS-V POM によって観測された帯電電位計 測例(1987年10月28日、テフロン)

5 衛星帯電防止技術

地上実験と宇宙環境での帯電観測結果から、将来の衛 星の高信頼度化と長寿命化を達成するために、衛星上で の局所帯電とそれに起因した放電を防止する必要のある ことが認識された。このため、局所帯電を防止する二つ の方法を検討した。

一つは、絶縁性材料に導電性コーティングを施すこと である(受動的帯電制御)。筆者は、導電性コーティン グとしてITO (Indium Tin Oxide)を使うことが、衛星 帯電防止に有効であることを、電子ビーム照射実験によ って確認した[5]。

もう一つの方法は、衛星からのプラズマ放出である (能動的帯電制御)[10]。図11に実験系の概略図を示し ている。実験においては、三菱電機鎌倉製作所の大型ス ペースチャンバ(直径約4m、長さ約9m)を使用した。 チャンバ中に電子銃と、衛星本体のモデルとしての 40x40x40cm³の金属ケースを用いた。この金属ケースの 2面に、イオンエンジン用中和器[11]と前章で述べた帯 電電位モニタPOM-Sの試験モデルを垂直に取り付けた。 中和器は、イオンエンジン動作中の衛星電位をプラズマ

図11 プラズマ放出による帯電制御実験系

図12 プラズマ放出によるカプトンの帯電除去の例

に対して 0V 付近に固定するためのもので、ホローカソ ード型プラズマ源である。厚さ 127µm のカプトンフィ ルムを試験サンプルとして帯電電位モニタ上に取り付け た。中和器とカプトンフィルムの間の距離は約50cmで、 カプトンフィルムと電子銃の間の距離は約70cm であっ た。電子銃からの電子ビームを 3x10⁶Torr の真空中でカ プトンフィルムサンプルに照射した。

図12に、カプトンフィルム上に蓄積した電荷を中和 器生成プラズマが除去した一例を示している。実験のは じめに、カプトンフィルムを3keVの電子ビームで照射 すると表面電位が-2kVに到達した。電子ビーム照射を 止めた後、Xeガスを2.4sccmの流量で中和器に導入し た。そのときチャンバ内の圧力は約5x10⁵Torrになり、 中和器を動作させるとXeプラズマが14.5分に生成し始 めた。その瞬間カプトンの表面電位は、表面で放電が発 生することなく、0Vになった。この試験結果から、プ ラズマ放出は絶縁性衛星表面材料の帯電を除去するのに 有効な手法の一つと考えられる。

6 低地球軌道プラズマとの干渉に関する実験的検討

宇宙ステーションや宇宙プラットフォーム、宇宙工 場、そして宇宙太陽発電衛星などの開発計画が低地球軌 道(LEO:Low Earth Orbit)で検討されているように、 宇宙システムの電力は増加する傾向にある。そのため、 電力線ハーネスの重量軽減と電力損失低減の面から、現 在の100Vに満たない発電電圧を高電圧化することが検 討されつつある。また、マイクロ波発生器や電気推進シ ステムのような高電圧搭載機器に直接高電圧を送ること も変換効率低減の面から必要になる。しかしながら、太 陽電池アレイから高電圧で発電し電力供給することは、 太陽電池アレイと宇宙プラズマとの間で次のような問題 点が発生する。

- (1) 周囲プラズマを通した電流リーク
- (2) アーク放電の発生

これらの問題は、静止軌道(GEO:Geostationary Orbit) よりも、プラズマ密度の濃密な高度400km程度のLEO プラズマ環境において特に顕著である。しかし、これら

図15 放電防止太陽電池アレイ構造

は将来の大型・大電力宇宙システムを構築していくため に克服しなければならない重要な技術課題である。

このような観点から、前述の大型スペースチャンバを 使用し、太陽電池クーポンパネルのプラズマ干渉実験を 実施した[12]。図13に実験系の概略を示す。Arガスを 使用したプラズマ源は、放電電流とガス流量を制御する ことによって、10⁴~10⁶cm⁻³のプラズマを生成すること が可能である。クーポンパネルとして、2cm[□]の25個の GaAsセルを直列に接続したものを用いた。クーポンパ ネルにDC電源から±1000V以下の電圧をステップ的に 印加し、そのときクーポンパネルを通して流れる電流 (プラズマカップリング電流)をエレクトロメータによ り測定した。図14(a)、(b)は、プラズマ電位に対して正お よび負極性のDCバイアス電圧の関数としてプラズマカ ップリング電流を測定した結果である。このときのプラ ズマ密度n_eと温度T_eはLangmuir プローブで計測した 結果、 $n_e = 1 \ge 10^5 \text{ cm}^3$ 、 $kT_e = 1.1 \text{ eV}$ であった。これら の結果から、次のことがわかった。

- (1) テストクーポンを正バイアスした場合、プラズマカ ップリング電流はDC電位と共に増加し、バイアス が100Vを超えると電流は急増する、いわゆる"ス ナップ・オーバ現象"が見られた。
- (2) 負バイアスのとき、放電が200V程度で発生した。

これらのことから、プラズマに対して負バイアスにな る場合に発生する放電を避けることが重要で、図15に 示すような新しい太陽電池アレイ構造を提案した[12]。

また、LEOでは大型宇宙機の進行方向と反対側にウ エークと呼ばれる高真空領域が形成され、そこで高電圧 システムが使用される可能性がある。しかしながら、ウ エークでは低エネルギー電子だけが宇宙プラズマから注 入されるため、高電圧絶縁における低エネルギー電子の 影響を検討した[13]。図16は、絶縁物の絶縁長に対する DC沿面放電電圧特性を示したものである。絶縁物に低 エネルギー電子の照射がある場合、沿面放電電圧が低下 するということを示している。そのため、高真空度のウ エークにおいてさえ沿面放電を抑制する対策が必要であ る。

図16 電子ビーム照射下の沿面放電電圧特性

7 まとめ

約20年間にわたり衛星帯電に関する研究を行ってき た。本研究の成果は衛星製造に生かされている。今後も 将来の宇宙機システムの高信頼性と長寿命化に寄与する ため衛星帯電に関する研究を継続していく予定である。

最後に、本論文は、筆者が三菱電機(株)在職中に行った「人工衛星の帯電放電に関わる研究」の概要をまとめたもので、既に7th Spacecraft Charging Technology Conference (2001年4月、オランダ Nordwijkで開催) において発表した論文 "Research Activity in Mitsubishi Electric on Spacecraft Charging" (Proc. 7th Spacecraft Charging Technology Conference, ESA SP-476, pp.89-94, 2001)を訳したものである。

本研究を遂行するに当たり、三菱電機(株)、宇宙開発 事業団(現JAXA)、宇宙科学研究所(現JAXA)他多くの 関係各位の協力を得た。深く感謝致します。

参考文献

- H. B. Garrett, "The charging of spacecraft surfaces", Rev. Geophys. Space Phys., Vol.19 (1981) pp.577-616
- [2] C. R. Francis, "Electrostatic charging problems of spacecraft", J. Electrostatics, Vol.11 (1982) pp.265-280
- [3] R. J. L. Grard, K. Knott & A. Pedersen, "Spacecraft charging effects ", Space Science Rev., Vol.34 (1983) pp.289-304
- [4] 藤井治久・園田克己・西本博信、「宇宙環境における 帯電放電現象および材料劣化」、電気学会論文誌A、 Vol.113-A (1993) pp.609-617
- [5] H. Fujii, Y. Shibuya, T. Abe, R. Kasai & H. Nishimoto,

"Electrostatic charging and arc discharges on satellite dielectrics simulated by electron beam", J. Spacecraft & Rockets, Vol.25 (1988) pp.156-161

- [6] 廣三壽・藤井治久、「電子ビーム照射による宇宙用熱 制御材料高分子フィルムの帯電特性」、電気学会論 文誌A、Vol.117 (1997) pp.905-812
- S. Hiro, K. Tsuji & H. Fujii, "Electron-beam-induced discharge phenomena of Teflon films for space use", Electrical Engineering in Japan, Vol.129 (1999) pp.10-19
- [8] A. Palov, H. Fujii & S. Hiro, "Theoretical investigation of charge-up dynamics in Teflon film induced by electron beam", Jpn. J. Appl. Phys., Vol.38 (1998) pp.6777-6781
- [9] H. Nishimoto, H. Fujii & T. Abe, "Surface charging on Engineering Test Satellite V of Japan", Proc.

Spacecraft Charging Technology Conference, (1989) pp.98-110

- [10] H. Fujii, K. Nakanishi, T. Abe, T. Ohmura & H. Nishimoto, "Suppression of surface potential formation on spacecraft", Proc. 16th Int. Symp. Space Technology and Science, (1988) pp.1613-1619
- [11] S. Shimada & K. Kajiwara, "An ion-engine system", Mitsubishi Electric Advance, Vol.37 (1986) pp.16-19
- [12] H. Fujii, Y. Shibuya, T. Abe, K. Ijichi, R. Kasai & K. Kuriki, "Laboratory simulation of plasma interaction with high voltage solar array", 15th Int. Symp. Space Technology and Science, (1986) pp.825-830
- [13] H. Fujii & S. Hiro, "Surface flashover of dielectrics during low-energy electron irradiation in vacuum", Proc. XVIIIth Int. Symp. Discharges and Electrical Insulation in Vacuum, (1998) pp.808-811