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1. Introduction

Given an undirected graph G (V, E), an edge-coloring

is an assignment of indices 1,...,n to the edges of G such

that no two edges incident on a vertex have the same

label. The indices are referred as colors, and the smallest

value of n for which such a coloring can be achieved is

called the chromatic index of the graph.

The online coloring algorithm is defined as follows.

It is not given all of input data in advance. As soon as it

is given an input data, it colors the input data one after

another. It is not given any further information of input

after it colors. In general they use a competitive analysis

to analyze the online algorithm, because an absolute per-

formance for the online algorithm dose often not make

sense. This is to compare cost of online algorithm with

that of offline algorithm for the same family of input

data. The offline algorithm is an algorithm that deals

with a family of input data all of which are known in

advance.

In this paper we consider an edge-coloring game of a

graph by two persons who are an adversary and an edge-

painter. The former strategy is to add or to delete edges

in the graph successively. The strategy is called input.

Since the adversary makes a family of input. On the

other hand, as soon as an edge is added in the graph, the

latter has to color the edge. Then it is never changed the

color of edges colored. The latter is not given any fur-

ther information of the adversary's. We call the coloring

strategies of the painter online edge-coloring algorithm. 

We analyze a deterministic online edge-coloring

algorithm and a randomized online edge-coloring algo-

rithm under the following cases. Here, we introduce a

new case that is not yet studied. The painter is limited

the amount of colors. When the painter can use k colors,

the adversary inputs to make bipartite graph that
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always has maximum degree of less than equal k. The

chromatic number of bipartite graph is equal to the max-

imum degree of the graph [3]. A minimum ratio which is

a ratio between the number of edges colored of an online

edge-coloring algorithm A for adversary's family of input

and that of offline edge-coloring algorithm is called a

competitiveness coefficient of an online edge-coloring

algorithm A. It is better algorithm that the online edge-

coloring algorithm has larger value of this coefficient.

We have proved that a competitiveness coefficient of

arbitrary deterministic online edge-coloring algorithm

is 0, and present a randomized online-coloring algorithm

that the competitiveness coefficient is  greater than

equal  for oblivious adversary.

2. Preliminaries

Here we wish to refer to some notations about graph

in [1], and the graph is undirected and is allowed to have

multiple edges except on special occasions.  

Theorem 1: The chromatic number of arbitrary graph G

is equal to the maximum degree of the graph or is

greater than it [1].

Theorem 2: The chromatic number of bipartite  graph G

is equal to the maximum degree of the graph [1].

We consider a two persons game by an edge-painter and

an adversary. Let Π be a problem with a finite set I of

input instances (fixed size), and a finite set of determinis-

tic algorithms A. For input i∈ I and algorithm a∈A, let

C(i, a) denote the cost of algorithm a on input i. An edge-

painter wants to make algorithms whose cost is smaller

and an adversary wants to make input instances whose

cost is larger. For probability distributions p over I and q

over A, let ip denote a random input chosen according to

p and ap denote a random algorithm chosen according to

q.

Theorem 3 (Yao's Minimax Principle)[2]: For all distribu-

tions p over I and q over A,

min E[C (ip,a)] ≦ max E[C (i,aq)]

where E[X] is expectation of X.

There are an oblivious adversary and an adaptive adver-

sary for adversary of randomized online edge-coloring

algorithm. When the former dose input, he cannot get

the information that edge-painter had chosen colors for

family of input before. When the latter dose input, he can

get the information that edge-painter had chosen colors

for family of input before. Since the adaptive adversary

is stronger than the other.

Let a graph G0 = (V∪W, E, k ) be the beginning of a

graph G, here |V|, |W|≫ k, E=0. Adversary adds or

deletes edges (v, w) ( here, v∈V, w∈W ) to G0 succes-

sively, under the following conditions : the degree of all

vertices are always less than equal k, and then the graph

is always bipartite graph which has maximum degree of

less than equal k on the way of inputting. The adversary

knows the strategies of the edge-painter. There are col-

ors which are color1, color2,..., colorh. When the adversary

adds an edge, the edge-painter colors the edge then the

color is different from each of adjacent edges. When

these color1, color2,..., colorh are all used on adjacent

edges, he must not color even if these color1, color2,...,

colorh are all different on adjacent edges. The edge-

painter never changes the color of the edge colored.

The edge-painter's aim is to make large number of

edges colored according to the families of input of the

adversary. The adversary's aim is to give the families of

input that the ratio between number of edges colored  of

online edge-coloring algorithm and that of offline edge-

coloring algorithm is made smaller. For every adding

edge (v, w) the degree of vertices v and w are increased

one, and for every deleting edge (v, w) the degree of ver-

tices v and w are decreased one.

We define a competitiveness coefficient for analysis of

deterministic online-edge coloring algorithm. Let

fA(e1,e2, ...,eM) be the number of edges colored of determin-

istic online edge-coloring algorithm A according to the

family of input e1,e2, ...,eM , and fO(e1,e2, ...,eM) be the num-

ber of edges  colored of optimal offline edge-coloring

algorithm according to the family of input e1,e2, ...,eM.  

Definition 1: A deterministic online edge-coloring algo-

rithm A is said to be C-competitive such that for any

families of input e1,e2, ...,eM,, a constant b exists,

fA(e1,e2, ...,eM)－C× fO(e1,e2, ...,eM)≧b.

And a constant b must be independent of M, however k

need not independence. The competitiveness coefficient

of A, denoted CA
det , is the supremum of C such that A is

C-competitive.  

Oblivious adversary is the same that he makes all of

families of input previously, because he has no influence

that edge-painter colored edges before. Let fR(e1,e2, ...,eM)
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be the number of edges colored of randomized online

edge-coloring algorithm R according to the family of

input e1,e2, ...,eM , then the  fR(e1,e2, ...,eM) is the random

variable.

Definition 2: For oblivious adversary a randomized

online edge-coloring algorithm R is said to be C-competi-

tive such that for any families of input e1,e2, ...,eM, a con-

stant b exists,

E [ fR(e1,e2, ...,eM)]－C× fo(e1,e2, ...,eM)≧ b.

And a constant b must be independent of M, however k

need not independence. The competitiveness coefficient

of R, denoted CR
obl, is the supremum of C such that R is C-

competitive.  

Let P be a probability distribution of choosing fami-

lies of input. The fA(e1,e2, ...,eM) and the fo(e1,e2, ...,eM) are

random variables under P. For a deterministic online

edge-coloring algorithm A, defined its competitiveness

coefficient under P, CA
P, to be supremum of C such that a

constant b exists,

E [ fA(e1,e2, ...,eM)]－C× E [ fo(e1,e2, ...,eM) ]≧ b.

Yao's Minimax Principle implies that 

CR
obl  ≦ max CA

P. 

An adaptive adversary can decide his input by know-

ing the information of previously inputs of edge-painter.

For such families of input decided e1,e2, ...,eM,, the

fR(e1,e2, ...,eM) is the random variable and the fo(e1,e2, ...,eM)

is also the random variable.

Definition 3: For an adaptive adversary a randomized

online edge-coloring algorithm R is said to be C-competi-

tive such that for the family of input e1,e2, ...,eM made by

the adaptive adversary.

A constant b exists,

E [ fR(e1,e2, ...,eM)]－C× E [ fo(e1,e2, ...,eM) ]≧ b.

And a constant b must be independent of M, however k

need not independence. The competitiveness coefficient

of R, denoted CR
ada, is the supremum of C such that R is

C-competitive.  

From definitions, these competitiveness coefficients are

0≦CAdet ,   CR
ada ,   CR

obl≦1.

Definition 4 : For any randomized online edge-coloring

algorithm R according to family of input e1,e2, ...,eM ,  let

g(bi) is as follows: when b1 , b2 ,…bi,…bn , are edges added,

g(bi)=0 : bi is not colored for adding edge bi, or

g(bi)=1 : v is colored for adding edge bi.

By linearity of expectation E [ fR(e1,e2, ...,eM)] is as fol-

lows:

E [ fR(e1,e2, ...,eM)]=E [ g(b1)] + E [ g(b2)] +…+ E [ g(bn)]

from  E [ fR(e1,e2, ...,eM)] = g(b1)+ g(b2) +…+g(bn).

Definition 5 : DR
obl is the supremum of D such that

E [ fR(e1,e2, ...,eM)]－D× [total of adding edges of e1,e2, ...,eM]

≧b.

And a constant b must be independent of M, howev-

er k need not independence.

Then   DR
obl≦CR

obl from

fo(e1,e2, ...,eM) ≦ [total of adding edges of e1,e2, ...,eM].

Definition 6 : For oblivious adversary of DR
obl the family of

inputs e1,e2, ...,eM is as follows :

a constant b exists such that the equation

E [ fR(e1,e2, ...,eM)]－D× [total of adding edges of e1,e2, ...,eM]

≧b is made up when D= DR
obl, or 

a constant b dose not exist such that the equation

E [ fR(e1,e2, ...,eM)]－D× [total of adding edges of e1,e2, ...,eM]

≧b is made up when D>DR
obl .

Color in this paper has linear order as follows :

color1 < color2 <････. 

If new color is used, it must be smallest number that is

not yet used.

A set of colors on edges incident from a vertex v is

denoted Sv. 

3.  Online edge-coloring problem

We present two cases about online edge-coloring

algorithm. One is that the edge-painter colors all of

edges added. Another is that the edged-painter need not

color any of edges added. We study these two cases

about deterministic online edge-coloring algorithm and

randomized online edge-coloring algorithm.

3.1 Deterministic online edge-coloring algorithm

Lemma 1: Let A be a deterministic online edge-coloring

algorithm that must try to color all of edges added. Then

CA
del=0. 

Proof We prove it by reductio ad absurdum. We assume

that  for any families of input e1,e2, ...,eM,  A has a constant

b according to C >0 and

fA(e1,e2, ...,eM)－C× fO(e1,e2, ...,eM) ≧b.

Here we think that the family of input is as follow.

1. Repeat k-1 times adding (v1, w1).

2. Repeat k-1 times adding (v2, w2).

：.

A
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：.

By the assumption, Sv1 ∪ Sv2 ∪ ... is a subset of 

{color1 , color2 , ････, color2k-2 }.

A subset of {color1 , color2 , ････, color2k-2 } is finite,

since there exist adequate sequence x1, x2, and Svx1=

Svx2 if this repeating are continued enough. 

3. And then this pattern is disconnected. After that,

next following edge (vxj
,  w0 ). is added. Edge-painter

cannot color an element of Sxj
on the edge (vxj

,  w0 ).

Since one of remaining colors without k -1 elements

of Sxj
needs to color on this edge. 

4. Add (vx2
,  w0 ).

Edge-painter cannot color this edge, because adja-

cent edges to this edge are already colored with all

of k colors.

5. Delete (vx2
,  w0 ).

6. Repeat step 4 and step 5 enough. 

For this family of input it can color all of edges if only it

dose not make Svx1=  Svx2 according to offline edge-col-

oring algorithm. 

By the assumption C× fO(e1,e2, ...,eM) becomes large

enough, but fA(e1,e2, ...,eM) is a constant. Since a constant

b, which is satisfied with the assumption, dose not exists.

This is the contradiction. □

On the above 2, the continuing enough is the maxi-

mum       × (k-1) + 1, and the maximum number of 

vertices |V| and |W|, for making the families of inputs of

the above, are 

×(k-1) + 1  and  ×2+1 

respectively.

Lemma 2: Let A be a deterministic online edge-coloring

algorithm that need not color any of edges added. Then

CA
det=0. 

Proof We prove it by reductio ad absurdum. We assume

that  for any families of input e1,e2, ...,eM,  A has a constant

b according to C >0 and

fA(e1,e2, ...,eM)－C× fO(e1,e2, ...,eM) ≧b.

Here we think that the family of input is as follow.

1. Repeat adding or deleting edge (v1, w1) until it is col-

ored. If it is not colored, then it is finished after

repeating enough.

2. Repeat step 1 k-1 times.

If it is not finished on the way of repeating, then

there are colors ( : color1 , color2 , ････, colork-1 ) on k-1

multiple edges between v1 and w1.

3. Repeat adding or deleting edge (v2, w2) until it is col-

ored. If it is not colored, then it is finished after

repeating enough. If it is colored, then it is  colork.

4. Repeat adding or deleting edge (v2, w2) until it is col-

ored. If it is not colored, then it is finished after

repeating enough.

5. Repeat step 4 k-1 times.

If it is not finished on the way of repeating, then

there are colors (color1 , color2 , ････, colork-1 ) on k-1

multiple edges between v2 and w2.

6. Delete edge (v2 , w1).

7. Repeat adding or deleting edge (v1, w0 ) until it is col-

ored. If it is not colored, then it is finished after

repeating enough. If it is colored, then it is  colork.

8. Add (v2 , w0 ).

Edge-painter cannot color this edge, because adja-

cent edges to this edge are already colored with all

of k colors.

9. Delete (v2 , w0 ).

10. Repeat step 8 and step 9 enough.

For this family of input, at least repeating edges

without coloring can paint adequate colors except edges

enough repeated according to offline edge-coloring algo-

rithm.

By the assumption C× fO(e1,e2, ...,eM) becomes large

enough, but fA(e1,e2, ...,eM) is a constant. Since a constant

b, which is satisfied with the assumption, dose not exists.

This is the contradiction. □

Theorem 4: Let A be a deterministic online edge algo-

rithm. Then Then CA
det= 0. 

Proof From lemma 1 and lemma 2 it is evident.

3.2 Randomized online edge-coloring algorithm

Theorem 5: Let R be an randomized online edge algo-

rithm. 

Then  CA
obl≦　　 ,  here X= ×((k-1)(k+1)+2).

Proof For proving this theorem we apply Yao's Minimax

Principle to the competitiveness coefficient of random-

ized online edge-coloring algorithm. 

We prove it by reductio ad absurdum. 

Let CR
obl be any randomized online edge algorithm R.

We assume that  CR
obl = +δ. Here, 

2k-1
k-1( )

2k-1
k-1(( ) )×(k-1) + 1

2k-1
k-1( )

k+1
2

X-1
X ( )

X-1
X
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< CR
obl = +δ≦1.

From Yao's Minimax Principle, there exist a deter-

ministic online edge-coloring algorithm, which is 

CA
P≧ +δ, according to any families of inputs chosen

of a probability distribution. Then we think a family of

input chosen of a probability distribution as follow, 

1. Repeat k-1 times adding (v1, w1 ).

2. Repeat k-1 times adding (v2, w2 ).

：.

：.

3. Repeat k-1 times adding (vk+1, wk+1).

There exist adequate x1, and x2, and Svx1 = Svx2 if A

dose not color all of edges.

4. After that, choose 2 vertices vy1 and vy2 in the same

probability from v1, v2,..., and add edges (vy1, w0 ) and

(vy2 , w0 ). 

5. Delete all of edges added by steps from 1 to 4.

6. Repeat times from step1 to step 5

7. Repeat Y times, which are repeated enough times

from step 1 to 6.

Let a period to be from step 1 to 6. Then these edges

added are X edges a period.

Then E [ fA(e1,e2, ...,eM)] is (X-1)Y, and E [ fO(e1,e2, ...,eM)] is XY.

Under like these families of inputs chosen of a probability

distribution P, any deterministic online edge-coloring

algorithm A is satisfied with next equation :

E [ fA(e1,e2, ...,eM)]－CA
P×E [ fO(e1,e2, ...,eM)]≧b.

Let B be the left side of the above equation. 

B< (X-1)Y－( +δ)×XY =－δ×XY.

But there is no constant b that is satisfied with B,

because Y is large enough. This is the contradiction of

the assumption, hence  CR
obl≦　　. □

Lemma 3: Let R be a randomized online edge-coloring

algorithm that must try to color all of edges added. Then

CR
obl=0. 

Proof We prove it by reductio ad absurdum. We assume

that for any families of input e1,e2,...,eM,  R has a constant

b according to C >0 and

E [ fR(e1,e2, ...,eM)]－C× fO(e1,e2, ...,eM) ≧b.

Here we think that the family of input is as follow.

1. Repeat k-2 times adding (v1 , w1).

2. Add 2 times (v1 , w2 ).

3. Repeat k -2 times adding (v2 , w2 ).

4. Add 2 times (v2 , w3 ).

5. Repeat k -2 times adding (v3 , w3 ).

6. Delete all of edges between v1 and w2 , and between

v2 and w3. Then Sv1 =Sv2 =Sv3 .  Let colorx and colory

to be 2 colors that are not yet used.

7. Add (v1 , w1) again.

As edge (v1 , w1) cannot be colored with the element

of Sv1 , this edge is colored with either of colorx or

colory except k -2 element of Sv1 . Let this edge to be

colored with colorx .  

8.  And then add (v1 , w2 ).

This edge is colored with the rest of two, i.e.  colory .

9.  Next. Add (v2 , w1). This edge is also colored with 

colory .

10.  Add (v2 , w3).

This edge is colored with the rest of two, i.e. colorx .

11. Delete (v1 , w1) that was added at step 7.

12. And then add (v1 , w3 ).

This edge cannot be colored, because adjacent edges

to this edge are already colored with all of k colors.

13. Delete (v1 , w3 ).

14. Repeat step 12 and step 13 enough.

For this family of input, at least repeating edges

without coloring can paint adequate colors except edges

enough repeated according to offline edge-coloring algo-

rithm.

By the assumption C× fO(e1,e2,...,eM) becomes large

enough, but E [ fR(e1,e2,...,eM)] is a constant. Since a con-

stant b, which is satisfied with the assumption, dose not

exists. This is the contradiction. □

Algorithm 1

Next, we study a randomized online edge-coloring

algorithm that often need not color any of edges added.

We pay attention to edges going out from each vertices,

as following : colorless edges going out from each ver-

tices are surely made more than half, instead the edges

which are tried to color should be colored absolutely.  All

of vertices have matrix 1×k. Let Av be a matrix of a ver-

tex v. 

Procedure algorithm 1 (G0, e1,e2,...,eM).

(a) For matrix of all of vertices u, we assign an ele-

ment whose probability is a half, as follows which q or

w, where k is even number:

X-1
X

X-1
X

X-1
X

k+1
2( )

X-1
X

X-1
X
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q Au [1]=0, Au [2]=0, ..., Au [ ]=0, Au [ +1]=1,

Au [ +2]=1, ..., Au [k]=1, or 

w Au [1]=1, Au [2]=1, ..., Au [ ]=1, Au [ +1]=0,

Au [ +2]=0, ..., Au [k]=0.

(b) All of subindex of matrices are keeping to the

unmark.

(c) while adversary inputs do

¡. if an edge (v, w) is added, then

A : when the minimum subindex of unmark of matrix of v

is a and the minimum subindex of unmark of matrix of w

is b, change the subinedx a of matrix of v and the

subinedx b of matrix of w from unmark to mark. 

B: if Av [a]=1 and Aw [b]=1, then an adversary tries to

color edge (v, w).

When an adversary tries to color edge (v, w), it is decided

to color or not by the color of edges going out from v or

w. If he colors, he should use the minimum color of

unused one among all of adjacent edges.

else edge (v, w) should not be colored.

™. elseif delete edge (v, w) existed, then, 

when edge is deleted, the subindex marked of Av and

Aw are returned to unmark.

Lemma 4: For any edge (v, w) added, when the minimum

subindex of unmark of matrix of v is a and the minimum

subindex of unmark of matrix of w is b, the probability of

Av [a]= Aw [b]=1 is .

Proof Number of matrices assigned of each vertices in V

∪W is 2|V |+|W | altogether and each of them has even prob-

ability. Then Av [a]=1 are 2|V |+|W |-1 cases and Aw [b]=1 of

2|V |+|W |-1 cases are 2|V |+|W |-2 cases. This is that it dose not

depend on any input before adding edge (v, w). Therefore

the probability of Av [a]= Aw [b]=1 is .

Lemma 5: Cobl
Algorithm1≦

Proof We prove it by reductio ad absurdum. We 

assume Cobl
Algorithm1 >   . For any families of input 

e1,e2,...,eM,,  there exists a constant b and 

E [ fAlgorithm1(e1,e2,...,eM)]－Cobl
Algorithm1× fO(e1,e2,...,eM) ≧b

-------(*). 

For large enough L, we think that there is a family of

input which is consisted of L elements of ( a, ā, a, ā, ..., a,

ā ). Then fO(a, ā, a, ā, ..., a, ā) = . 

We pay attention to a case that under this family of

input any edge a=(v, w) is added and is colored. Let a be

the minimum subindex of unmark of matrix of v and b be

the minimum subindex of unmark of matrix of w. Only if

Av[a]=1 and Aw[b]=1, then edge-painter tries to color

edge (v, w). From lemma 4, this probability is . 

Thus, E[ fAlgorithm1( a, ā, a, ā, ..., a, ā )]

=E [g(a)] + E [g(a)]+ … + E [g(a)] = + +… + 

= × .

So, the left side of (*)= ×　－CoblAlgorithm1×

=( －Cobl
Algorithm1)× .

Then,   － Cobl
Algorithm1 < 0 and L is large enough. 

Since a constant b, which is satisfied with the (*), dose

not exists. This is the contradiction. □

Theorem 6: Cobl
Algorithm1 = 

Proof Let (v, w) be an edge to try to color. Let a be the

minimum subindex of unmark of matrix of v and b be the

minimum subindex of unmark of matrix of w. Then it

was Av[a]=Aw[b]=1. The number of edges colored, (which

are going out from v or w just before adding (v, w)), is at

most -1 respectively even if any matrices are assigned 

to each vertices. Since the total of edges colored which

are going out from both vertices is at most ( -1) ×

2=k -2. So the edge (v, w) can be colored.                       □

Theorem 7: Cada
Algorithm1=0

Proof We think a family of input as follows:

1. repeat to add (v, w) until not to be able to colored.

From algorithm 1, an edge without color should

appear. An (v, w)1 denotes the edge.

2. repeat to add or to delete (v, w)1 enough.

When these family of input are e1,e2,...,eM,

E[ fAlgorithm1(e1,e2,...,eM)] is a constant. But because offline

edge-coloring algorithm can be colored the only 
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edges which are repeated at 2-stage at least,

E[ fAlgorithm1(e1,e2,...,eM)] can be large enough. 

Since Cada
Algorithm1≦ 0.                  □

Algorithm 2

An aim of algorithm 2 is to cut down edges which

are not able to colored as edge-painter tries to color

edges added with probability .

Procedure algorithm 2(G0, e1,e2,...,eM).

(a) While edge (v, w) is added do

¡.The edge-painter tries to color the edge (v, w) with

probability . 

When the edge (v, w) is tried to color, the edge is actively

decided to color or not to color by color of edges already

going out from v and w. When the edge is colored, it

should be colored with minimum color which is not used

among of all adjacent edges.

Lemma 6: Cobl
Algorithm2≦

Proof We prove it by reductio ad absurdum. We assume

Cobl
Algorithm2> . For any families of input e1,e2,...,eM,,  there 

exists a constant b and 

E [ fAlgorithm2(e1,e2,...,eM)]－Cobl
Algorithm2× fO(e1,e2,...,eM) ≧b -------

(*). 

For large enough L, we think that there is a family of

input which is consisted of L elements of (a, ā, a, ā,  ..., a,

ā ). Then fO(a, ā, a, ā, ..., a, ā, ) = . 

The edge-painter tries to color any edge a=(v, w) added.

When the probability is to try to color, the edge is 

actively colored. This is also for any edges added.

Thus, E [ fAlgorithm2(a, ā, a, ā, a,…a, ā,  )]

=E [g(a)] + E [g(a)]+ … + E [g(a)]

= + + … + = ×　 .

So, the left side of (*)= × －Cobl
Algorithm2×

=( －Cobl
Algorithm2)×　 .

Then,  －Cobl
Algorithm2<0 and L is large enough. Since a 

constant b, which is satisfied with the (*), dose not exists.

This is the contradiction. □

We look for the infimum of CR
obl with CR

obl≦ CR
obl from

definition. 

Lemma 7: For a randomized online edge-coloring algo-

rithm R trying to color with a constant provability, there

exist adequate i and M in a family of oblivious adversary

DR
obl. This is consisted of M elements of (a1, a2, ..., ai, āi, ai,

āi, … , ai, āi,). Let edges which are added be b1, b2,..., ai,

ai,..., there exist a minimum E [g(ai)] among E [g(b1)],

E [g(b2)] ,..., E [g(ai)], E [g(ai)] ,....Here āi means deleting ai.  

Proof We assume that there is no family of DR
obl such

that. Let a family of DR
obl be e1,e2,...,eN. And then let edges

added be b1, b2,..., bL.  Let E [g(bj)] be a minimum among

E [g(b1)], E [g(b2)] ,..., E [g(bL)], where 1≦ j ≦L. Then we

think that a family of input which L edges are added are

as follows :

(e1,e2,..., bj, b̄j,  bj, b̄j, ...) . From definition of DR
obl, there

exist a constant b that satisfies next equation,

E [ fR(e1,e2,..., bj, b̄j,  bj, b̄j, ...)]－D× [total of adding edges of

e1,e2,..., bj, b̄j,  bj, b̄j, ...] ≧b-------(**), where D=DR
obl .

E [ fR(e1,e2,..., bj, b̄j,  bj, b̄j, ...)]= E [g(b1)]+ E [g(b2)] +…+

E [g(bj)]+E [g(b̄j]+…≦E [g(b1)]+E [g(b2)] +…+ E [g(bn)]=

E [ fR(e1,e2,...,eN)]

Since at D > DR
obl a constant b, which is satisfied with the

(**), dose not exists.  Therefore (e1,e2,..., bj, b̄j,  bj, b̄j, ...) is

one of a family of DR
obl, but this is contradictory to the

assumption. □

We call an adding of a family of input (a1, a2, ..., ai, (v, w))

a familyρ1 of input. We make a familyρ2 of input from a

familyρ1 of input. Theρ2 is as follows ; let degree of v

and of w just before adding (v, w) of  a familyρ1 of input

be x and y respectively. Edges that go out from w to

some elements of V are added k-1-y times after edges

that go out from v to some elements of W are added k-1-x

times following (a1, a2, ..., ai), and after that (v, w) is

added.

Lemma 8: For a randomized online edge-coloring algo-

rithm R trying to color with a constant provability, the

next holds good.

(E [g((v, w))] according to (v, w) added withρ1 )≧(E [g((v,

w))] according to (v, w) added withρ2. )

Proof When x=y=k-1, an equal sign holds good.

When x≦k-2 or y≦k-2, the algorithm R tries to color (v,

w) with a constant provability. But number of color may

be increased because edges going out from v and w just

before adding (v, w) of  a familyρ2 of input increases

more than edges going out from v and w just before
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adding (v, w) of  a familyρ1 of input. So the possibility of

not being able to color increases even if the R tries to

color according to (v, w) added withρ2. Therefore this

case also holds good.             □

Lemma 9 : D
obl

Algorithm2 > 

Proof From lemma 7 and lemma 8 one of a family of

oblivious adversary of Cobl
Algorithm2 is L edges added  like as

(a1, a2,…, ai, (v, w), (v, w), (v, w), (v, w), …,). (After some

adequate inputs are continued, same edges add or delete

alternatively.) Let only edges added from those above be

(b1, b2,…, (v, w), (v, w), …). Then there are E[g((v, w))] that

is minimum of E[g(b1)], E[g(b2))], …, E[g((v, w))] , E[g((v,

w))], and degree of both v and w just before (v, w) added

are k-1. If E[g((v, w))] > ,  then   E[ faligorithm2 (a1, a2,…, ai, 

(v, w), (v, w), (v, w), (v, w),…,)]=E[g(b1)]+E[g(b2)] +…+

E[g((v,w))]+E[g((v, w))]+…> ×L. Therefore the lemma 

holds good such that we must prove E[g((v, w))]> .

Let sets of color, which colored edges going out from v

and w just before (v, w) added, be Sv and Sw. 

When |Sv| + | Sw|≧k, it is possible not to color (v, w).

When |Sv∪Sw|≦k -1, it is possible to color (v, w) even if

edges are colored with any color.

When algorithm2 colors (v, w) and |Sv∪Sw|≦k -1, g((v,

w))=1. The probability of |Sv∪Sw|≦k -1 is greater than

|Sv∪Sw|≦k -1. 

(The probability of algorithm2 to color (v, w)) × ( the

probability of |Sv∪Sw|≦k -1) ≧ (the probability of algo-

rithm2 to color (v, w)) × ( the probability of |Sv∪Sw|≦k-1)

= × =  . Therefore g((v, w))=1, then the proba

bility is greater than . 

Since E [g((v, w))]> .                           □

Theorem 8: < Cobl
Algorithm2≦

Proof From lemma 9 

and  Cobl
Algorithm≧ Dobl

Algorithm2, 

Cobl
Algorithm≧ Dobl

Algorithm2 > . 

And from lemma 8,  Cobl
Algorithm≦　 .

Theorem 9: Cada
Algorithm2 = 0

Proof We think that the family of input is as follow.

1. Repeat adding or deleting edge (v1, w1) until it is col-

ored. 

2. 2. Repeat step 1 k-1 times.

Then there are colors ( : color1 , color2 , ････, colork-1 )

on k-1 multiple edges between v1 and w1.

3. Repeat adding or deleting edge (v2 , w1) until it is col-

ored, then it is  colork.

4. Repeat adding or deleting edge (v2 , w2) until it is col-

ored. 

5. Repeat step 4 k -1 times, then there are colors ( :

color1 , color2 , ････, colork-1 ) on k -1 multiple edges

between v2 and w2.

6. Delete edge (v2 , w1).

7. Repeat adding or deleting edge (v1, w0) until it is col-

ored, then it is colork.

8. Add (v2 , w0).                

Edge-painter cannot color this edge, because adja-

cent edges to this edge are already colored with all of k

colors.

9. Delete (v2 , w0).

10. Repeat step 8 and step 9 enough.

For this family of input, at least repeating edges

without coloring can paint adequate colors except edges

enough repeated according to offline edge-coloring algo-

rithm.

E [ fO(e1,e2,...,eM)] becomes large enough, but

E [ fAlgorithm2(e1,e2,...,eM)]is a constant. 

Since Cada
Algorithm2≦ 0.                  □

Here, number of bits of random numbers in the algo-

rithm 2 is equal to total of edges added.

4. Conclusion

We have proved that a competitiveness coefficient

CA
det of arbitrary deterministic online edge-coloring algo-

rithm is 0, and present a randomized online-coloring

algorithm that the competitiveness coefficient CR
obl is

and  a randomized online-coloring algorithm that the

competitiveness coefficient is < CR
obl ≦ for oblivi-

ous adversary. Next study is the presentation of a ran-

domized online-coloring algorithm that the competitive-

ness coefficient  CR
obl is more lager probability.
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