<u>21110</u> <u>2012 シラバス</u>

論理回路 (Logic Circuits) 2年・通年・2単位・必修

情報工学科 担当 岩田 大志

[準学士課程(本科 1-5 年) 学習教育目標] (2) [システム創成工学教育プログラム 学習・教育目標] [JABEE 基準]

〔講義の目的〕

近年、 進歩の著しいコンピュータやディジタル情報通信端末の内部では、 すべての情報が0,1の2値で表わされ、 論理回路によって加工される。 本講義では、 このような2値情報を処理する論理回路に対する基礎知識を修得し、 その設計法を身に付けることを目的とする。

[講義の概要]

論理回路を数学的に扱うために論理関数を定義し、 その性質や表現法を明らかにする。 次に、 論理 関数の簡単化法を紹介し、 組合せ回路の最適化設計に直結することを明らかにする。 さらに、 組合せ 回路と順序回路の違いを明らかにし、 同期式順序回路の設計法について詳しく解説する。

[履修上の留意点]

講義は教科書に沿って進める。講義をよく聞き、その場で理解するよう心がけること。 講義の最初に前回の講義の内容に関連するミニレポートを与えるので、その場で提出すること。 演習では講義で学んだことをCADツールを用いて実装し、その結果をレポートとして提出すること。

〔到達目標〕

前期中間試験:

- 1) 1年次のディジタル回路で学んだことを復習する
- 2) ブール式、カルノー図、クワイン・マクラスキー法を用いた論理関数の簡単化を行うことができる
- 3) 任意の機能を持つ組合せ回路を設計することができる

前期中間レポート:

- 4) CADツールを扱うことができ、論理合成、論理関数の簡単化が行える
- 5) 回路図を解析し、出力の論理関数を得ることができる

前期期末試験:

- 1) 仕様 (タイミングチャート、説明) から順序回路を設計することができる
- 2) 状態を併合、等価判定することで順序回路を簡単化することができる

前期期末レポート:

- 3) CADツールを用いて組合せ回路を設計/論理検証することができる
- 4) 面積と遅延のトレードオフを考察することができる

学年末試験:

- 1) ラッチの動きを理解し、マスター・スレーブ型のFFやエッジトリガ型のFFの特徴が分かる
- 2) 任意のFFを利用した同期式順序回路を設計することができる
- 3) MOSトランジスタを用いたゲート/順序素子を設計することができる

学年末レポート:

4) CADツールを用いて同期式順序回路を設計/論理検証することができる

〔評価方法〕 定期試験(60%) レポート(30%) ミニレポート(10%)

〔教 科 書〕山田輝彦著「論理回路理論」森北出版を使用するが、講義用プリントも配布する。(参考図書)田丸啓吉著「論理回路の基礎」工学図書

〔関連科目・学習指針〕

1年次「ディジタル回路」の履修を前提として講義を進める。論理回路は多くの科目の基礎となる科目であるが、その中でも特に、情報工学実験I, II, IIIの一部テーマ、3年次の「コンピュータアーキテクチャ」、4年次の「計算機援用論理設計」、5年次「集積回路」などとの関連が深い。

<u>2012 シラバス</u> <u>21110</u>

講義項目・内容

講義垻日	・内谷		14 —
週数	講義項目	講義内容	自己 評価 *
第1週	論理回路の基礎	講義の進め方、標準形、ブール公式	
第2週	論理関数の簡単化 1	クワイン・マクラスキー法を用いた簡単化	
第3週	論理関数の簡単化 2	禁止入力がある場合の簡単化	
第4週	実験 1	CAD ツールを用いた論理関数の簡単化と回路の解析	
第5週			
第6週	組合せ回路の設計	任意の組合せ回路の設計する	
第7週	中間試験の解答	前期中間試験の解答と返却	
第8週	実験 2	 CAD ツールを用いた組合せ回路の設計と論理検証	
第9週		全加算器の設計 全加算器の設計 桁上げ伝搬加算器の設計 桁上げ先見加算機の設計	
第 10 週			
第 11 週		11117元兄加昇1後の設計	
第 12 週	非同期式順序回路	順序回路の動作解析、遷移表、遷移図	
第 13 週	順序回路の設計	タイミングチャートから任意の順序回路を設計する	
第 14 週	順序回路の簡単化 1	状態の併合による順序回路の簡単化	
第 15 週	順序回路の簡単化 2	状態の k-次等価判定による順序回路の簡単化	
前期期末試験			
第 16 週	期末試験の解答	前期期末試験の解答と返却	
第 17 週	ラッチ/FF	SR-FF、JK-FF、D-FF、T-FF の機能と構成	
第 18 週	有限状態機械1	ミーリー型の順序機械とムーア型の順序機械の定義	
第 19 週	有限状態機械 2	ミーリー型からムーア型への変換法	
第 20 週	同期式順序回路 1	FF を利用した順序回路の設計	
第 21 週	同期式順序回路 2	FF を利用した順序回路の設計	
第 22 週			
第 23 週	実験 3	CAD ツールを用いた順序回路の設計と論理検証 D-FF の動作確認 シフトレジスタの設計 線形フィードバックシフトレジスタの設計 自動販売機の設計	
第 24 週			
第 25 週			
第 26 週			
第 27 週			
第 28 週	トランジスタ設計 1	MOS トランジスタを用いた組合せゲート設計	
第 29 週	トランジスタ設計 2	MOS トランジスタを用いた順序ゲート設計	
第 30 週	故障とテスト	故障のモデル化と D アルゴリズム	
* 1 · 空全1		- 2.わわ理解できた 1.ほとんど理解できたかった 0.まったく理解	マナナム

* 4 : 完全に理解した、 3 : ほぼ理解した、 2 : やや理解できた、 1 : ほとんど理解できなかった、 0 : まったく理解できなかった。

(達成) (達成) (達成) (達成)